scholarly journals Possibility of Simulating Forced Convection in Fast Neutron Reactors Using a Light Water Test Facility

2018 ◽  
Vol 3 (3) ◽  
pp. 279
Author(s):  
V.I. Slobodchuk ◽  
E.A. Avramova ◽  
E.M. Shchennikova ◽  
D.A. Shal'kov

The paper evaluates the possibility of modeling the heat transfer phenomena in a liquid-metal coolant using a light water test facility. A large nuclear power reactor (like the BN-1200 project) was selected as a reactor installation to be modeled. To validate the model, the similarity theory and the “black box” method were used. The paper uses the experience of a number of researchers in this field, in particular, the accepted assumptions which do not result in serious loss in modeling accuracy. The governing criteria of similarity were estimated based on the fundamental differential equations of convective heat transfer, so were the conditions under which it is possible to model sodium coolant by using  light water with adequate accuracy. The paper presents the scales of the parameters used for the model - reactor comparison. Dependence curves of certain scales with regard to others are constructed, and the possibility of achieving similarity of certain parameters in modeling was estimated. Recommendations are provided on designing a water test model of the BN reactor and on carrying out experiments using this test model.

2021 ◽  
Vol 7 (4) ◽  
pp. 349-355
Author(s):  
Viktor I. Slobodchuk ◽  
Dmitry A. Uralov ◽  
Ekaterina A. Avramova

The paper evaluates the possibility of modeling the heat transfer phenomena in a liquid-metal coolant using a light water test facility. It considers the natural circulation of the coolant in the upper plenum of the fast-neutron reactor. The sodium-cooled BN-1200 reactor was selected as the reactor installation to be modeled. The development of novel reactor designs must be based on the results of experimental studies. Some problems of modeling thermohydraulic processes in BN type reactors are studied by using sodium test facilities. Experimental studies of natural convection processes using light water test facilities can be considered as a good alternative to those using sodium test facilities. To validate the model, the similarity theory and the “black box” method were used and their principles and applicability were analyzed. Using the “black box” method makes it possible to avoid detailed modeling of such components as the reactor core and heat exchangers, replacing them by a simplified representation of these components to simulate the integral characteristics of the existing real life equipment. The paper considers the basic criteria which determine the similarity of the thermohydraulic processes under study. The governing criteria of similarity were estimated based on the fundamental differential equations of natural convection heat transfer. Based on these criteria, a set of dimensionless values was obtained which show the correlation between the model parameters and the characteristics of the reactor facility. Besides, generalized relationships were derived which can be used to estimate the scaling factors for calculating the key values of the reactor facility based on the model parameters. These relationships depend on the thermal-physics parameters of the working fluids, the geometrical scale value and the ratio of the thermal power of the model to that of the reactor facility, i.e., model-to-reactor thermal power ratio. The conditions under which it is possible to model sodium coolant by light water with adequate accuracy were analyzed. An example is given of the numerical values of the scaling factors for one of the reference light water test facilities. The paper uses the experience of a number of foreign researchers in this field, in particular, the accepted assumptions which do not result in serious loss in modeling accuracy. According to the available estimates, the assumptions used do not result in considerable losses in accuracy. Thus, the natural circulation of the sodium coolant in the upper plenum of the fast-neutron reactor can be simulated with adequate accuracy by using light water test facilities.


2017 ◽  
Vol 19 (2) ◽  
pp. 71
Author(s):  
Jati Susilo ◽  
Tagor Malem Sembiring ◽  
Winter Dewayatna

The RSG-GAS reactor has a facility for irradiation of the fuel pin of nuclear power reactor, namely Power Ramp Test Facility (PRTF). The in-house fabrication PWR fuel pin has prepared for irradiations in the PRTF facility, currently, while the various enrichments of uranium are analyzed using the analytical tool. In the next step, it is planned to perform an irradiation of PHWR fuel pin sample of natural UO2 in the facility. Before irradiation in the core, it should be analyzed by using the analytical tool. The objectives of this paper are to optimize irradiation time based on the burn-up, the generated linear power and the neutron flux level at the target. The 3-dimension calculations have been carried out by using the CITATION code in the SRAC2006 code system. Since the coolant of the reactor is H2O, the effect of moderators in the pressurized tube, H2O and D2O, were analyzed, as well as pellet radius and moderator densities. The calculation results show that the higher linear power as irradiation time longer is occurred preferably in the D2O moderator than in H2O. For the D2O moderator, the higher pressure affects the lower density and longer irradiation time. The maximum irradiation time for natural UO2 fuel pin with the pressurized D2O moderator is about 9.5×104 h, with the linear power of 700 W/cm. During irradiation, neutronic parameters of the core such as excess reactivity and ppf show a very small change, still far below design value.Keywords:  PHWR, Neutron Flux, Thermal Power, PRTF, RSG-GAS KARAKTERISTIK IRADIASI TARGET PIN PHWR UO2 ALAM PADA PRTF TERAS RSG – GAS. Teras RSG-GAS dilengkapi dengan fasilitas untuk uji iradiasi bahan bakar nuklir atau disebut dengan Power Ramp Test Fasility (PRTF). Saat ini sedang dilpersiapkan untuk dilakukan uji sample pin bahan bakar PWR pada fasilitas PRTF. Analisis terhadap uji iradiasi sample pellet UO2 dengan berbagai pengkayaan telah dilakukan menggunakan paket program komputer. Dimasa yang akan datang, uji iradiasi pin bahan bakar PHWR UO2 alam juga sedang dalam perencanaan. Sebelum diiradiasi di dalam teras, maka terlebih dahulu harus dilakukan analisis dengan menggunakan paket program komputer. Tujuan dari penelitian ini adalah optimasi uji iradiasi pin bahan bakar UO2 alam sebagai fungsi waktu iradiasi berdasarkan burn-up, daya linier dan fluks neutron. Perhitungan teras RSG-GAS dilakukan dengan paket program SRAC2006 modul CITATION dalam bentuk geometri 3 dimensi. Analisis dilakukan terhadap pengaruh penggunaan jenis moderator pada tabung tekan iradiasi (H2O dan D2O), perubahan ukuran pelllet UO2 dan perubahan besarnya densitas moderator D2O. Dari analisis hasil perhitungan diketahui bahwa semakin lama waktu iradiasi akan menghasilkan daya termal yang semakin besar jika menggunakan moderator D2O dibandingkan H2O. Semakin tinggi tekanan atau semakin kecil densitas moderator, maka akan menghasilkan daya termal yang semakin besar seiring bertambah lamanya waktu iradiasi. Batas maksimal waktu iradiasi untuk pin bahan bakar UO2 alam dengan moderator D2O bertekanan adalah sekitar 9,5×104 jam, dengan batasan daya linier desain kemampuan peralatan, 700 W/cm. Selama iradiasi, nilai parameter neutronik teras reaktor seperti reaktivitas lebih dan ppf hanya menunjukkan perubahan yang sangat kecil, masih jauh dibawah batas yang ditetapkan dalam desain.Kata kunci: PHWR, Fluks Neutron, Daya Termal, PRTF, RSG-GAS


Author(s):  
Dong Yang ◽  
Qixian Wu ◽  
Lin Chen ◽  
Igor Pioro

Abstract Thermal efficiency and safety of Generation-IV nuclear-power-reactor concept - Supercritical Water-cooled Reactor (SCWR) depend on solid knowledge of specifics of SCW thermophysical properties and heat transfer within these conditions. As a preliminary, but conservative approach to uncover these specifics is analysis of experimental data obtained in bare tubes including numerical investigation. This paper presents the numerical investigation, based on computational fluid dynamics, of the heat-transfer characteristics of SCW flow in a 4-m long circular tube (ID = 10 mm). The flow and heat-transfer mechanism of SCW in the vertical tube under the influence of buoyancy and flow acceleration are analyzed. Results of numerical simulation predict the experimental data with reasonable accuracy. The results indicated that in the region of q/G > 0.4 kJ/kg, the wall temperature distribution tends to be non-linear, and heat transfer may deteriorate. When Tb < Tpc < Tw, internal wall temperature shows peaks, which corresponds to heat-transfer deterioration. Meanwhile the position, where the deterioration occurs is continuously moved forward to the inlet as the heat flux increases. Velocity changes near the wall show an M shape according to mass conservation for the density change.


Sign in / Sign up

Export Citation Format

Share Document