nuclear power reactor
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 28)

H-INDEX

16
(FIVE YEARS 1)

Hydrogen ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 28-42
Author(s):  
Hyung-Seok Kang ◽  
Jongtae Kim ◽  
Seong-Wan Hong

We performed a hydrogen combustion analysis in the Advanced Power Reactor 1400 MWe (APR1400) containment during a severe accident initiated by a small break loss of coolant accident (SBLOCA) which occurred at a lower part of the cold leg using a multi-dimensional hydrogen analysis system (MHAS) to confirm the integrity of the APR1400 containment. The MHAS was developed by combining MAAP, GASFLOW, and COM3D to simulate hydrogen release, distribution and combustion in the containment of a nuclear power plant during the severe accidents in the containment of a nuclear power reactor. The calculated peak pressure due to the flame acceleration by the COM3D, using the GASFLOW results as an initial condition of the hydrogen distribution, was approximately 555 kPa, which is lower than the fracture pressure 1223 kPa of the APR1400 containment. To induce a higher peak pressure resulted from a strong flame acceleration in the containment, we intentionally assumed several things in developing an accident scenario of the SBLOCA. Therefore, we may judge that the integrity of the APR1400 containment can be maintained even though the hydrogen combustion occurs during the severe accident initiated by the SBLOCA.


2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Gustavo Betarte ◽  
Maximiliano Cristiá ◽  
Carlos Luna ◽  
Adrián Silveira ◽  
Dante Zanarini

Formal methods (FM) are mathematics-based software development methods aimed at producing ``code for a nuclear power reactor''. That is, due application of FM can produce bug-free, zero-defect, correct-by-construction, guaranteed, certified software. However, the software industry seldom use FM. One of the main reasons for such a situation is that there exists the perception (which might well be a fact) that FM increase software costs. On the other hand, FM can be partially applied thus producing high-quality software, although not necessarily bug-free. In this paper we outline some FM related techniques whose application the cryptocurrency community should take into consideration because they could bridge the gap between ``loose web code'' and ``code for a nuclear power reactor''. We include relevant case studies in the area of cryptocurrency.


Author(s):  
V. V. Opiatiuk ◽  
I. L. Kozlov ◽  
V. I. Skalozubov ◽  
I. A. Ostapenko

This article considers the principal theoretical possibility of regulating a nuclear power reactor under changing operating modes conditions when external periodic disturbances take place in conditions of changing the operating mode. By the external periodic perturbation a downward change in the conditions of the heat sink was meant. The magnitude of the changes was preliminarily calculated in such a way that the operating conditions of the power plant did not exceed the boundaries of the safe operation zone of the reactor. In the case of approaching the operation parameters to the critical ones, the heat sink was increased until the working conditions returned to their previous state. In this work the amplitude frequency response of a non-linearly enhanced system in the nuclear power plant operating conditions when non-linearly reacting to external periodic influences has been studied. The external cyclic disturbances effect produced on the reactor that initially existed under stationary operating conditions has been considered. The research was carried out by numerical simulation of the competition between processes occurring in a nuclear power plant and determined by the system’s reaction time and relaxation time while responding to periodic external influences. Calculations of the relaxation time dependence on the fixed frequency-revealing external influence’s temperature are presented. Also, the relaxation time dependence on the frequency of external influence at a fixed temperature for systems with various relaxation periods was calculated. It is determined that when the dependence between system temperature and the external influence time is calculated, there exists a wide range of possible frequency control. To evaluate the behavior of a nuclear power reactor under conditions of operating modes changes, a fundamental physical mathematical model of the reactor’s state under external harmonic influence is presented. It is based on the nonlinear Riccati equation. The external harmonic effect was simulated by changing the heat supply and heat removal conditions near the critical point.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Wakabayashi

AbstractThe long-term issues of nuclear power systems are the effective use of uranium resources and the reduction of radioactive waste. Important radioactive wastes are minor actinides (MAs: 237Np, 241Am, 243Am, etc.) and long-lived fission products (LLFPs: 129I, 99Tc, 79Se, etc.). The purpose of this study was to show a concept that can simultaneously achieve the breeding of fissile materials and the transmutation of MAs and LLFPs in one fast reactor. Transmutation was carried out by loading innovative Duplex-type MA fuel in the core region and LLFP-containing moderator in the first layer of the radial blanket. Breeding was achieved in the core and axial blanket. As a result, it was clarified that in this fast breeder reactor, a breeding ratio of approximately 1.1 was obtained, and MAs and LLFPs achieved a support ratio of 1 or more. The transmutation rate was 10.3%/y for 237Np, 14.1%/y for 241Am, 9.9%/y for 243Am, 1.6%/y for 129I, 0.75%/y for 99Tc, and 4%/y for 79Se. By simultaneously breeding fissile materials and transmuting MAs and LLFPs in one fast reactor, it will be possible to solve the long-term issues of the nuclear power reactor system, such as securing nuclear fuel resources and reducing radioactive waste.


2021 ◽  
Author(s):  
Kudiyarasan Swamynathan ◽  
N. Sthalasayanam ◽  
M. Sridevi

In a Nuclear Power reactor, safety loads are backed by standby battery system. The healthiness of the battery is very essential requirement and prominent attention is given to availability and reliability of battery supply in nuclear plants. Hence regular monitoring and testing the performance of the battery is a prime requirement. The capacity and load cycle discharge testing of the battery is done annually and the current system employed is to discharge the battery current through resistor banks, which results in unusable power consumption and is uneconomical. The growing trend in power electronics field has given the new technology of regenerating the dissipated power to grid. This paper proposes a high power electronic regenerative technology with high efficiency, low harmonics to pump the dc power to the grid. Though, it is available at lower rating in industry, the paper proposes a high power regenerative discharge system. The topology selected is interleaved boost converter interfaced to a three phase grid connected inverter. The challenges involved are high power operation, steep current discharges with a minimal interference to the normal plant operation power supplies during the regeneration. This paper also presents the system design and simulation results.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012065
Author(s):  
Shengqiang Liu ◽  
Baoyu Wang ◽  
Wei Li

Abstract Cladding tube is one of the key components in nuclear power reactor. In this paper, the forming process of a new cladding tube is investigated, namely ribbed tube. The influence of semi die angle on the forming process of ribbed tube is studied. Firstly, the strain-stress curves of 316L stainless steel (SS) at different strain rates are obtained. Based on the strain-stress curves, a modified Johnson-Cook constitutive model which ignore the influence of temperature are used, and the parameters of the modified model are determined. Then, the modified Johnson-Cook is used to establish the finite element (FE) model of ribbed tube drawing process, and two pass drawing process is adopted in this paper. Finally, the influence of semi die angle on the forming process (forming quality and drawing force) of ribbed tube is elucidated, and the credibility of the simulation is confirmed by comparing the simulation and experimental results. The results show that when the semi die angle less than 8 °, all the formed ribbed tubes meet the requirement, but there are inner grooves appear at the inner wall, and the inner grooves cannot be avoided in the drawing process. Moreover, when the semi die angle is 8 °, the inner grooves have smallest depth.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1245
Author(s):  
Deli Zhao ◽  
Liguo Ren ◽  
Yong Wang ◽  
Wei Wang ◽  
Zhe Zhu ◽  
...  

AISI 321 stainless steel has excellent resistance to intergranular corrosion and is generally used in nuclear power reactor vessels and other components. The as-cast and wrought structures are quite different in hot workability, so physical simulation, electron back-scatter diffraction, and hot processing maps were used to study the mechanical behavior and microstructure evolution of as-cast nuclear grade 321 stainless steel in the temperature range of 900–1200 °C and strain rate range of 0.01–10 s−1. The results showed that the flow curve presented work-hardening characteristics. The activation energy was calculated as 478 kJ/mol. The fraction of dynamic recrystallization (DRX) increased with increasing deformation temperature and decreasing strain rate. DRX grain size decreased with increasing Z value. Combining the hot working map and DRX state map, the suggested hot working window was 1000–1200 °C and 0.01–0.1 s−1. The main form of instability was necklace DRX. The nucleation mechanism of DRX was the migration of subgrains. The δ phase reduced the activation energy and promoted DRX nucleation of the tested steel.


2021 ◽  
Vol 380 ◽  
pp. 111302
Author(s):  
Mohamed Y.M. Mohsen ◽  
Mohamed A.E. Abdel-Rahman ◽  
Mohamed Safaa Hassan ◽  
A. Abdelghafar Galahom

Sign in / Sign up

Export Citation Format

Share Document