scholarly journals Calculation of a thermal stress state, when heating a steel cylindrical object

Author(s):  
Valery M. Kolokoltsev ◽  
Aleksandr S. Savinov ◽  
Sergey M. Andreev ◽  
Karolina V. Angold

The paper studies longitudinal strains occurring along the height of a cylindrical object as a result of the temperature difference along the cylinder radius. It describes a particular case of a thermal stress state, when heating a cylinder. A temperature field was measured, when solving an axisymmetric task of heating a cylindrical object. Using the existing analytical dependence, the authors identified mathematical relations to calculate normal, tangential, and equivalent stresses. Such procedure may be applied to determine a stress state of cylinders 0.1 and 0.05 m in radius, when heating up to 400°C. It is shown that changes in a cylinder radius, maintaining the same heating conditions, result in decreasing maximum tension stresses from 45.9 to 23.9 MPa, and compressive stresses from 43.1 to 22.5 MPa. The authors determined principal stresses along a cylindrical rod radius during heating. Applying the Huber–Mises–Hencky criterion, changes in a growth rate of the stress state along a cylinder radius was determined. It is found that at the point of equalizing temperature along the cylinder radius, the highest stresses are in the layer periphery and central areas of the object under study and amount to 40.5 MPa at set conditions of calculations. It is noted that the developed mathematical tool may be used to evaluate a thermal stress state of mill rolls during their heat treatment.

1986 ◽  
Vol 18 (1) ◽  
pp. 87-92
Author(s):  
A. S. Tsybenko ◽  
B. A. Kuranov ◽  
A. D. Chepurnoi ◽  
V. A. Shaposhnikov ◽  
N. G. Krishchuk

Vestnik MGSU ◽  
2020 ◽  
pp. 380-398
Author(s):  
Nikolay A. Aniskin ◽  
Nguyen Trong Chuc

Introduction. The concreting of solid structures, such as concrete dams, bridge constructions, foundations of buildings and structures, is accompanied by exothermic heating, caused by cement hydration. Heat, emitted by mass concrete blocks, slowly leaves constructions. A substantial temperature difference frequently arises between the solid concrete centre and its surface. If this temperature difference reaches a critical value, thermal cracking occurs, which destroys structural continuity. Temperature problems and those associated with thermal stress state should be resolved to pre-assess and prevent potential cracking. This problem has enjoyed the attention of specialists, and it has been the subject of numerous research projects. Materials and methods. The overview is based on the information about implemented research projects focused on the thermal cracking of mass concrete dams and its prevention. Computer modeling techniques were applied to develop a mathematical model capable of projecting and assessing the potential cracking of mass concrete. Results. The co-authors have compiled an overview of advanced approaches to the assessment of potential thermal crack formation, contemporary problem-solving methods and selected research findings obtained using the finite element method. The co-authors offer a thermal behaviour/thermal stress state projection methodology for solid concrete, as well as a thermal crack formation assessment methodology. Conclusions. The thermal cracking problem has not been solved yet. The proposed methodology and a projection-oriented numerical model can be used as a reference by civil engineers in the process of designing and constructing concrete gravity dams. It may help to reduce cracking probability caused by heat evolution in cement.


1986 ◽  
Vol 18 (5) ◽  
pp. 692-698
Author(s):  
Ya. S. Podstrigach ◽  
Yu. A. Chernukha ◽  
N. I. Voitovich

Sign in / Sign up

Export Citation Format

Share Document