scholarly journals USE OF FUZZY MATHEMATICAL QUADRATIC PROGRAMMING APPROACH IN JOB EVALUATION

Author(s):  
Manoj Kumar Mandal ◽  
Arun Prasad Burnwal ◽  
Neelam Dubey ◽  
Om Prakash Dubey

Purpose of study: The current paper is the based on mathematical model of the job evolution system. Methodology: The proposed method is the fusion of quadratic programming and fuzzy logic where quadratic programming is used to optimize objective function with related constraints in the form of non-linear formulation. Fuzzy logic is used to control uncertainty related information by estimating imprecise parameters Main Finding: The optimal solution of the job evaluation based on fuzzy environment where goal is imprecise. Application of this study: It is used in the areas where information is not exact. The originality of this study: The novelty of the method is the fusion of quadratic programming and fuzzy logic.

2021 ◽  
pp. 1-18
Author(s):  
Xiang Jia ◽  
Xinfan Wang ◽  
Yuanfang Zhu ◽  
Lang Zhou ◽  
Huan Zhou

This study proposes a two-sided matching decision-making (TSMDM) approach by combining the regret theory under the intuitionistic fuzzy environment. At first, according to the Hamming distance of intuitionistic fuzzy sets and regret theory, superior and inferior flows are defined to describe the comparative preference of subjects. Hereafter, the satisfaction degrees are obtained by integrating the superior and inferior flows of the subjects. The comprehensive satisfaction degrees are calculated by aggregating the satisfaction degrees, based on which, a multi-objective TSMDM model is built. Furthermore, the multi-objective TSMDM model is converted to a single-objective model, the optimal solution of the latter is derived. Finally, an illustrative example and several analyses are provided to verify the feasibility and the effectiveness of the proposed approach.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Syaripuddin ◽  
Herry Suprajitno ◽  
Fatmawati

Quadratic programming with interval variables is developed from quadratic programming with interval coefficients to obtain optimum solution in interval form, both the optimum point and optimum value. In this paper, a two-level programming approach is used to solve quadratic programming with interval variables. Procedure of two-level programming is transforming the quadratic programming model with interval variables into a pair of classical quadratic programming models, namely, the best optimum and worst optimum problems. The procedure to solve the best and worst optimum problems is also constructed to obtain optimum solution in interval form.


Execution of any project with optimum duration, cost, quality and risk is very significant for project administrators in recent very competitive commercial situation. Sometimes it is not possible to have detailed earlier statistics about project criteria. In such situations, estimation of different Decision makers are considered in linguistic variables and altered into triangular fuzzy numbers as fuzzy numbers have ability to deal with vagueness. In this paper, we frame a new multi-mode multi objective critical path problem and suggest a possibilistic methodology to find critical path for a project where three decision makers’ views are considered as three modes of execution in terms of linguistic variables. We have formulated model of multiple mode in project network problem and find its solution with fuzzy programming approach with exponential membership and linear membership function. The proposed approach is useful to solve multi-mode project management problem which calculates optimal critical path according to four criteria- time, cost, risk and quality with three activities modes of execution in fuzzy environment.


Sign in / Sign up

Export Citation Format

Share Document