scholarly journals Cost and Performance-Based Resource Selection Scheme for Asynchronous Replicated System in Utility-Based Computing Environment

Author(s):  
Wan Nor Shuhadah Wan Nik ◽  
Bing Bing Zhou ◽  
Zarina Mohamad ◽  
Mohamad Afendee Mohamed
2020 ◽  
Vol 32 (18) ◽  
pp. 14817-14838
Author(s):  
Danlami Gabi ◽  
Abdul Samad Ismail ◽  
Anazida Zainal ◽  
Zalmiyah Zakaria ◽  
Ajith Abraham ◽  
...  

Abstract With growing demand on resources situated at the cloud datacenters, the need for customers’ resource selection techniques becomes paramount in dealing with the concerns of resource inefficiency. Techniques such as metaheuristics are promising than the heuristics, most especially when handling large scheduling request. However, addressing certain limitations attributed to the metaheuristic such as slow convergence speed and imbalance between its local and global search could enable it become even more promising for customers service selection. In this work, we propose a cloud customers service selection scheme called Dynamic Multi-Objective Orthogonal Taguchi-Cat (DMOOTC). In the proposed scheme, avoidance of local entrapment is achieved by not only increasing its convergence speed, but balancing between its local and global search through the incorporation of Taguchi orthogonal approach. To enable the scheme to meet customers’ expectations, Pareto dominant strategy is incorporated providing better options for customers in selecting their service preferences. The implementation of our proposed scheme with that of the benchmarked schemes is carried out on CloudSim simulator tool. With two scheduling scenarios under consideration, simulation results show for the first scenario, our proposed DMOOTC scheme provides better service choices with minimum total execution time and cost (with up to 42.87%, 35.47%, 25.49% and 38.62%, 35.32%, 25.56% reduction) and achieves 21.64%, 18.97% and 13.19% improvement for the second scenario in terms of execution time compared to that of the benchmarked schemes. Similarly, statistical results based on 95% confidence interval for the whole scheduling scheme also show that our proposed scheme can be much more reliable than the benchmarked scheme. This is an indication that the proposed DMOOTC can meet customers’ expectations while providing guaranteed performance of the whole cloud computing environment.


2013 ◽  
Vol 3 (1) ◽  
pp. 44-57 ◽  
Author(s):  
Veena Goswami ◽  
Choudhury Nishkanta Sahoo

Cloud computing has emerged as a new paradigm for accessing distributed computing resources such as infrastructure, hardware platform, and software applications on-demand over the internet as services. This paper presents an optimal resource management framework for multi-cloud computing environment. The authors model the behavior and performance of applications to integrate different service-providers for end-to-end-requirements. Each service model caters to specific type of requirements and there are already number of players with own customized products/services offered. Intercloud Federation and Service delegation models are part of Multi-Cloud environment where the broader target is to achieve infinite pool of resources. They propose an analytical queueing network model to improve the efficiency of the system. Numerical results indicate that the proposed provisioning technique detects changes in arrival pattern, resource demands that occur over time and allocates multiple virtualized IT resources accordingly to achieve application Quality of Service targets.


2018 ◽  
Vol 210 ◽  
pp. 04018
Author(s):  
Jarosław Koszela ◽  
Maciej Szymczyk

Today’s hardware has computing power allowing to conduct virtual simulation. However, even the most powerful machine may not be sufficient in case of using models characterized by high precision and resolution. Switching into constructive simulation causes the loss of details in the simulation. Nonetheless, it is possible to use the distributed virtual simulation in the cloud-computing environment. The aim of this paper is to propose a model that enables the scaling of the virtual simulation. The aspects on which the ability to disperse calculations depends were presented. A commercial SpatialOS solution was presented and performance tests were carried out. The use of distributed virtual simulation allows the use of more extensive and detailed simulation models using thin clients. In addition, the presented model of the simulation cloud can be the basis of the “Simulation-as-a-Service” cloud computing product.


2020 ◽  
Vol 7 (11) ◽  
pp. 11209-11222
Author(s):  
Xinxin He ◽  
Jie Lv ◽  
Jiaqi Zhao ◽  
Xiaolin Hou ◽  
Tao Luo

2015 ◽  
Vol 733 ◽  
pp. 779-783 ◽  
Author(s):  
Lu Dai ◽  
Jian Hua Li

Resource allocation is a key technology of cloud computing. At present, the most of studies on resource allocation mainly focus on improving the overall performance by balancing the load of data center. This paper will design the experimental platform of resource allocation algorithm, energy optimization and performance analysis, obtain original achievements in scientific research ,for the resource allocation method based on immune algorithm and energy optimization in cloud computing to provide innovative ideas and scientific basis. This research has important significance for further study on resource allocation and energy optimization in cloud computing environment.


Sign in / Sign up

Export Citation Format

Share Document