scholarly journals SENSING AIR POLLUTION FIELD STRUCTURE IN THE INDUSTRIAL CITY’S ATMOSPHERE BY IMAGE RECOGNITION METHOD: NEURAL NETWORKS MODELLING

2014 ◽  
Vol 2 (2) ◽  
pp. 24-28
Author(s):  
A. V. Glushkov ◽  
Yu. Ya. Bunyakova ◽  
G. P. Prepelitsa ◽  
T. V. Solonko
2020 ◽  
Author(s):  
Jing Li ◽  
Xinfang li ◽  
Yuwen Ning

Abstract With the advent of the 5G era,the development of massive data learning algorithms and in-depth research on neural networks, deep learning methods are widely used in image recognition tasks. However, there is currently a lack of methods for identifying and classifying efficiently Internet of Things (IoT) images. This paper develops an IoT image recognition system based on deep learning, i.e., uses convolutional neural networks (CNN) to construct image recognition algorithms, and uses principal component analysis (PCA) and linear discriminant analysis (LDA) to extract image features, respectively. The effectiveness of the two PCA and LDA image recognition methods is verified through experiments. And when the image feature dimension is 25, the best image recognition effect can be obtained. The main classifier used for image recognition in the IoT is the support vector machine (SVM), and the SVM and CNN are trained by using the database of this paper. At the same time, the effectiveness of the two for image recognition is checked, and then the trained classifier is used for image recognition. It is found that a CNN and SVM-based secondary classification IoT image recognition method improves the accuracy of image recognition. The secondary classification method combines the characteristics of the SVM and CNN image recognition methods, and the accuracy of the image recognition method is verified to provide an effective improvement through experimental verification.


2011 ◽  
Vol 121-126 ◽  
pp. 2141-2145 ◽  
Author(s):  
Wei Gang Yan ◽  
Chang Jian Wang ◽  
Jin Guo

This paper proposes a new image segmentation algorithm to detect the flame image from video in enclosed compartment. In order to avoid the contamination of soot and water vapor, this method first employs the cubic root of four color channels to transform a RGB image to a pseudo-gray one. Then the latter is divided into many small stripes (child images) and OTSU is employed to perform child image segmentation. Lastly, these processed child images are reconstructed into a whole image. A computer program using OpenCV library is developed and the new method is compared with other commonly used methods such as edge detection and normal Otsu’s method. It is found that the new method has better performance in flame image recognition accuracy and can be used to obtain flame shape from experiment video with much noise.


Sign in / Sign up

Export Citation Format

Share Document