High Capacity Image Steganography Technique based on LSB Substitution Method

2016 ◽  
Vol 10 (1) ◽  
pp. 259-266 ◽  
Author(s):  
Marghny H. Mohamed ◽  
Loay M. Mohamed
2016 ◽  
Vol 76 (6) ◽  
pp. 8597-8626 ◽  
Author(s):  
Khan Muhammad ◽  
Jamil Ahmad ◽  
Naeem Ur Rehman ◽  
Zahoor Jan ◽  
Muhammad Sajjad

The growth rate of the Internet is exceeding that of any previous technology. As the Internet has become the major medium for transferring sensitive information, the security of the transferred message has now become the utmost priority. To ensure the security of the transmitted data, Image steganography has emerged out as an eminent tool of information hiding. The frequency of availability of image file is high and provides high capacity. In this paper, a method of secure data hiding in image is proposed that uses knight tour positions and further 8-queen positions in 8*8 pixel blocks.The cover image is divided into 8*8 pixel blocks and pixels are selected from each block corresponding to the positions of Knight in 8*8 chessboard starting from different pixel positions. 8-pixel values are selected from alternate knight position. Selected pixels values converted to 8-bit ASCII code and result in 8* 8 bit matrix. 8-Queen’s solution on 8*8 chessboard is applied on 8*8 bit matrix. The bits selected from 8-Queens positions and compared with 8-bit ASCII code of message characters. The proposed algorithm changes the LSB of only some of the pixels based on the above comparison. Based on parameters like PSNR and MSE the efficiency of the method is checked after implementation. Then the comparison done with some already proposed techniques. This is how, image steganography showed interesting and promising results when compared with other techniques.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 108655-108663
Author(s):  
Pauline Puteaux ◽  
Manon Vialle ◽  
William Puech

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gandharba Swain

The combination of pixel value differencing (PVD) and least significant bit (LSB) substitution gives higher capacity and lesser distortion. However, there are three issues to be taken into account: (i) fall off boundary problem (FOBP), (ii) pixel difference histogram (PDH) analysis, and (iii) RS analysis. This paper proposes a steganography technique in two variants using combination of modified LSB substitution and PVD by taking care of these three issues. The first variant operates on 2 × 3 pixel blocks and the second technique operates on 3 × 3 pixel blocks. In one of the pixels of a block, embedding is performed using modified LSB substitution. Based on the new value of this pixel, difference values with other neighboring pixels are calculated. Using these differences, PVD approach is applied. The edges in multiple directions are exploited, so PDH analysis cannot detect this steganography. The LSB substitution is performed in only one pixel of the block, so RS analysis also cannot detect this steganography. To address the FOBP, suitable equations are used during embedding procedure. The experimental results such as bit rate and distortion measure are satisfactory.


Author(s):  
Meenakshi S Arya ◽  
Meenu Rani ◽  
Charndeep Singh Bedi

<p>With the intrusion of internet into the lives of every household and terabytes of data being transmitted over the internet on daily basis, the protection of content being transmitted over the internet has become an extremely serious concern. Various measures and methods are being researched and devised everyday to ensure content protection of digital media. To address this issue of content protection, this paper proposes an RGB image steganography based on sixteen-pixel differencing with n-bit Least Significant Bit (LSB) substitution. The proposed technique provides higher embedding capacity without sacrificing the imperceptibility of the host data. The image is divided into 4×4 non overlapping blocks and in each block the average difference value is calculated. Based on this value the block is classified to fall into one of four levels such as, lower, lower-middle, higher-middle and higher. If block belongs to lower level then 2-bit LSB substitution is used in it. Similarly, for lower-middle, higher-middle and higher level blocks 3, 4, and 5 bit LSB substitution is used. In our proposed method there is no need of pixel value readjustment for minimizing distortion. The experimental results show that stego-images are imperceptible and have huge hiding capacity.</p>


Sign in / Sign up

Export Citation Format

Share Document