New Dynamical Behaviour of the Coronavirus (2019-Ncov) Infection System with Non-Local Operator from Reservoirs to People

2021 ◽  
Vol 10 (2) ◽  
pp. 205-212
2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Victoria Knopova ◽  
Alexei Kulik

AbstractIn this paper, we show that a non-local operator of certain type extends to the generator of a strong Markov process, admitting the transition probability density. For this transition probability density we construct the intrinsic upper and lower bounds, and prove some smoothness properties. Some examples are provided.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Alexey Milekhin

Abstract We continue the investigation of coupled Sachdev-Ye-Kitaev (SYK) models without Schwarzian action dominance. Like the original SYK, at large N and low energies these models have an approximate reparametrization symmetry. However, the dominant action for reparametrizations is non-local due to the presence of irrelevant local operator with small conformal dimension. We semi-analytically study different thermodynamic properties and the 4-point function and demonstrate that they significantly differ from the Schwarzian prediction. However, the residual entropy and maximal chaos exponent are the same as in Majorana SYK. We also discuss chain models and finite N corrections.


2020 ◽  
Vol 131 ◽  
pp. 109541 ◽  
Author(s):  
Emile F. Doungmo Goufo ◽  
M Khumalo ◽  
Ignace Tchangou Toudjeu ◽  
Ahmet Yildirim

Author(s):  
Zhifeng Shao

Recently, low voltage (≤5kV) scanning electron microscopes have become popular because of their unprecedented advantages, such as minimized charging effects and smaller specimen damage, etc. Perhaps the most important advantage of LVSEM is that they may be able to provide ultrahigh resolution since the interaction volume decreases when electron energy is reduced. It is obvious that no matter how low the operating voltage is, the resolution is always poorer than the probe radius. To achieve 10Å resolution at 5kV (including non-local effects), we would require a probe radius of 5∽6 Å. At low voltages, we can no longer ignore the effects of chromatic aberration because of the increased ratio δV/V. The 3rd order spherical aberration is another major limiting factor. The optimized aperture should be calculated as


Author(s):  
Zhifeng Shao ◽  
A.V. Crewe

For scanning electron microscopes, it is plausible that by lowering the primary electron energy, one can decrease the volume of interaction and improve resolution. As shown by Crewe /1/, at V0 =5kV a 10Å resolution (including non-local effects) is possible. To achieve this, we would need a probe size about 5Å. However, at low voltages, the chromatic aberration becomes the major concern even for field emission sources. In this case, δV/V = 0.1 V/5kV = 2x10-5. As a rough estimate, it has been shown that /2/ the chromatic aberration δC should be less than ⅓ of δ0 the probe size determined by diffraction and spherical aberration in order to neglect its effect. But this did not take into account the distribution of electron energy. We will show that by using a wave optical treatment, the tolerance on the chromatic aberration is much larger than we expected.


Sign in / Sign up

Export Citation Format

Share Document