scholarly journals MODELING AND CONTROL OF THE DUAL ACTIVE HALF-BRIDGE CONVERTER WITH SYMMETRIC PWM MODULATION APPLIED TO THE INTERCONNECTION OF POWER GENERATION SOURCES

2021 ◽  
Vol 26 (03) ◽  
pp. 1-11
Author(s):  
Maicon Luís Flach ◽  
Lucas Giuliani Scherer ◽  
Robinson Figueiredo de Camargo
Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2358 ◽  
Author(s):  
Omar Mohamed ◽  
Ashraf Khalil

This paper reviews the modeling techniques and control strategies applied to gas turbine power generation plants. Recent modeling philosophies are discussed and the state-of-the-art feasible strategies for control are shown. Research conducted in the field of modeling, simulation, and control of gas turbine power plants has led to notable advancements in gas turbines’ operation and energy efficiency. Tracking recent achievements and trends that have been made is essential for further development and future research. A comprehensive survey is presented here that covers the outdated attempts toward the up-to-date techniques with emphasis on different issues and turbines’ characteristics. Critical review of the various published methodologies is very useful in showing the importance of this research area in practical and technical terms. The different modeling approaches are classified and each category is individually investigated by reviewing a considerable number of research articles. Then, the main features of each category or approach is reported. The modern multi-variable control strategies that have been published for gas turbines are also reviewed. Moreover, future trends are proposed as recommendations for planned research.


2014 ◽  
Vol 551 ◽  
pp. 326-330
Author(s):  
Xiao Yan Sun ◽  
Yong Qiang Zhu

New energy power generation system needs interface converter to connect to the grid. Because the type of new energy is different, its interface converter is also different. In order to adapt to the diversification of the modeling and control strategy of the converter, a generalized interface model is established in this paper. The model is based on the electromechanical transient simulation, which ignores the physics switching device and simplifies the control module. Finally, adaptive verifications are made in PSCAD/EMTDC and Matlab/Simulink for photovoltaic power generation system and wind power generation system. The results of simulation prove the validity of the generalized model.


2021 ◽  
pp. 1-12
Author(s):  
Rasoul Akbari ◽  
Afshin Izadian

Abstract This paper introduces the modeling and control of split-shaft drivetrains where the system's inertia is adjusted to store the energy. Accordingly, a flywheel is mechanically coupled with the rotor of a doubly-fed induction generator. The generator is driven by a split-shaft drivetrain that decouples the turbine's shaft from the shaft of the generator to provide independent control of their angular velocities. Hence, the turbine controller can track the point of maximum power (MPPT) while the generator controller can adjust the generator speed. Accordingly, The flywheel, which is directly connected to the shaft of the generator, is charged and discharged by controlling the generator speed. In this process, the flywheel can modify the electric power generation of the generator on-demand. Since the drivetrain is a split-shaft, the turbine speed is not affected by this energy storing process. This improves the quality of injected power to the grid. The structure of the flywheel energy storage can be simplified by removing its dedicated motor/generator and the power electronics driver. This significant modification can only occur in the split-shaft drivetrain. Two separate supervisory controllers are developed in the form of fuzzy logic regulators to generate a real-time output power reference. Furthermore, small-signal models are developed to analyze and improve the MPPT controller. Extensive simulation results demonstrate the feasibility of such a system and its improved quality of power generation.


2011 ◽  
Vol 148-149 ◽  
pp. 983-986
Author(s):  
Farouk Naeim ◽  
Sheng Liu ◽  
Lan Yong Zhang

The electrical power generation and distribution in power plant suffers from so many problems, such as instability of demand and generation. These lead to increase of generation cost. The system under consideration is consist of two steam turbines each of 30 MW with total of 60 MW (2*30). The excitation system of 30 MW generators has been chosen, due to the problems faced by operators in power station. These problems include aging of the control element, feeding back signal and loading increase/ decrease problems.


Sign in / Sign up

Export Citation Format

Share Document