transient simulation
Recently Published Documents


TOTAL DOCUMENTS

1075
(FIVE YEARS 221)

H-INDEX

39
(FIVE YEARS 6)

2021 ◽  
pp. 146808742110643
Author(s):  
Aleksandrs Korsunovs ◽  
Oscar Garcia-Afonso ◽  
Felician Campean ◽  
Gaurav Pant ◽  
Efe Tunc

This paper introduces a comprehensive and systematic Design of Experiments based methodology deployed in conjunction with a multi-physics engine air-path and combustion co-simulation, leading to the development of a global transient simulation capability for engine out NOx emissions. The proposed multi-physics engine simulation framework couples a real-time one-dimensional air flow model with a Probability Density Function based Stochastic Reactor Model that accounts for detailed in-cylinder combustion chemistry to predict combustion emissions. The integration challenge stemming from the different computation complexities and time scales required to ensure adequate fidelity levels across multi-physics simulations was addressed through a comprehensive Design of Experiments methodology to develop a reduction of the slower Stochastic Reactor Model simulation to enable a transient simulation focussed on NOx emissions. The Design of Experiments methodology, based on Optimal Latin Hypercube design experiments, was deployed on the multi-physics engine co-simulation platform and systematically validated against both steady state and transient light-duty Diesel engine test data. The surrogate selection process included the evaluation of a range of metamodels, with Kriging metamodels selected based on both the statistical performance criteria and consideration of physical phenomena trends. The transient validation was carried out on a simulated New European Drive Cycle against the experimental data available, showing good capability to capture transient NOx emission behaviour in terms of trends and values. The significance of the results is that it proves the transient and drive cycle capability of the multi-physics simulation platform, suggesting a promising potential applicability for early powertrain development work focussed on drive cycle emissions.


Author(s):  
Jesús García ◽  
Rodrigo Barraza ◽  
Yen Chean Soo Too ◽  
Ricardo Vásquez Padilla ◽  
David Acosta ◽  
...  

2021 ◽  
Author(s):  
Yuzhi Zhang ◽  
Li Lisa Qi ◽  
Taosha Jiang ◽  
Harish Suryanarayana ◽  
Silvio Colombi ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Siyu Lyu ◽  
Daogang Lu ◽  
Danting Sui

The Fast Flux Test Facility (FFTF) is a liquid sodium-cooled nuclear reactor designed by the Westinghouse Electric Corporation for the U.S. Department of Energy. In July 1986, a series of unprotected transients were performed to demonstrate the passive safety of FFTF. Among these, a total of 13 loss-of-flow-without scram (LOFWOS) tests were conducted to confirm the liquid metal reactor safety margins, provide data for computer code validation, and demonstrate the inherent and passive safety benefits of specific design features. In our preliminary work, we have performed relatively coarse modeling of the FFTF. To better predict the transient behavior of FFTF LOFWOS test #13, we modeled it using a more refined thermal-hydraulics model. In this paper, we simulate FFTF LOFWOS test #13 with the system safety analysis code SAC-3D according to the benchmark specifications provided by Argonne National Laboratory (ANL). The simulation range includes the primary and secondary circuits. The reactor core was modeled by the built-in 3D neutronics calculation module and the parallel-channel thermal-hydraulics calculation module. To better predict the reactivity feedback introduced by coolant level variations within the GEMs, a real-time macro cross-section homogenization processing module was developed. The steady-state power distribution was calculated as the transient simulation initial boundary conditions. In general, both the steady-state calculation results and the whole-plant transient behavior predictions are in good agreement with the measured data. The relatively large deviations in transient simulation occur in the outlet temperature predictions of the PIOTA in row 6. It can be preliminarily explained by the reason for neglecting the heat transfer between channels in this model.


Sign in / Sign up

Export Citation Format

Share Document