scholarly journals Ganglioside GM1 contributes to extracellular/intracellular regulation of insulin resistance, impairment of insulin signaling and down-stream eNOS activation, in human aortic endothelial cells after short- or long-term exposure to TNFα

Oncotarget ◽  
2017 ◽  
Vol 9 (5) ◽  
pp. 5562-5577 ◽  
Author(s):  
Norihiko Sasaki ◽  
Yoko Itakura ◽  
Masashi Toyoda
Author(s):  
Sergio Aguilera Suarez ◽  
Nadia Chandra Sekar ◽  
Ngan Nguyen ◽  
Austin Lai ◽  
Peter Thurgood ◽  
...  

Here, we describe a motorized cam-driven system for the cyclic stretch of aortic endothelial cells. Our modular design allows for generating customized spatiotemporal stretch profiles by varying the profile and size of 3D printed cam and follower elements. The system is controllable, compact, inexpensive, and amenable for parallelization and long-term experiments. Experiments using human aortic endothelial cells show significant changes in the cytoskeletal structure and morphology of cells following exposure to 5 and 10% cyclic stretch over 9 and 16 h. The system provides upportunities for exploring the complex molecular and cellular processes governing the response of mechanosensitive cells under cyclic stretch.


2006 ◽  
Vol 290 (3) ◽  
pp. E516-E522 ◽  
Author(s):  
Aidar R. Gosmanov ◽  
Frankie B. Stentz ◽  
Abbas E. Kitabchi

Elevated glucose concentrations have profound effects on cell function. We hypothesized that incubation of human aortic endothelial cells (HAEC) with high glucose increases insulin signaling and develops the appearance of insulin-stimulated glucose uptake by the cells. Compared with 5 mM glucose, incubation of HAEC with 30 mM glucose for up to 48 h increased in a time-dependent manner expression of insulin receptor, insulin receptor substrate (IRS)-1, IRS-2, and GLUT1 proteins. High glucose also increased the specific binding of 125I-labeled insulin in HAEC accompanied by accelerated production of interleukin (IL)-6 and IL-8. Short-term stimulation by 50 μU/ml insulin did not activate [14C]glucose uptake by HAEC incubated in 5 mM glucose. However, an addition of insulin to high glucose-exposed endothelial cells led to a significant increase in [14C]glucose uptake in a glucose concentration- and time-dependent fashion, reaching a plateau at 48 h of incubation. Furthermore, incubation of HAEC with 30 mM glucose resulted in a new insulin-stimulated extracellular signal-regulated kinase-1/2 mitogen-activated protein kinase phosphorylation and increased lipid peroxidation and production of reactive oxygen species. These studies show for the first time that high glucose increases expression of insulin receptors and downstream elements of the insulin-signaling pathway and transforms “insulin-resistant” aortic endothelial cells into “insulin-sensitive” tissue regarding glucose uptake.


2014 ◽  
Vol 103 (suppl 1) ◽  
pp. S142.1-S142
Author(s):  
A Oberbach ◽  
V Adams ◽  
N Schlichting ◽  
N Jehmich ◽  
U Voelker ◽  
...  

2005 ◽  
Vol 73 (12) ◽  
pp. 8050-8059 ◽  
Author(s):  
Hiromichi Yumoto ◽  
Hsin-Hua Chou ◽  
Yusuke Takahashi ◽  
Michael Davey ◽  
Frank C. Gibson ◽  
...  

ABSTRACT Toll-like receptors (TLRs) are differentially up-regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. Epidemiological data support the idea that periodontal disease may be a risk factor for acceleration of atherosclerosis. Porphyromonas gingivalis, the etiological agent of periodontal disease, invades endothelium, has been detected in human atheromatous tissue, and accelerates atheroma formation in apolipoprotein E−/− mice with concurrent induction of TLRs in the aorta. As endothelial cells can present antigen via TLRs and play an important role in the development of atherosclerosis, we examined TLR expression in human aortic endothelial cells (HAEC) cultured with wild-type P. gingivalis, a fimbria-deficient mutant, and purified antigens. We observed increased TLR expression in HAEC infected with wild-type P. gingivalis by fluorescence-activated cell sorter, but not with noninvasive, fimbria-deficient mutant or purified P. gingivalis antigens. Following a wild-type P. gingivalis challenge, functional TLR2 and TLR4 activation was assessed by subsequent stimulation with TLR agonists Staphylococcus aureus lipoteichoic acid (SLTA; TLR2 ligand) and Escherichia coli lipopolysaccharide (LPS; TLR4 ligand). Unchallenged HAEC failed to elicit monocyte chemoattractant protein 1 (MCP-1) in response to LPS or SLTA but did so when cultured with wild-type P. gingivalis. P. gingivalis-induced TLR2 and -4 expression on HAEC functionally reacted to SLTA and E. coli LPS as measured by a further increase in MCP-1 production. Furthermore, MCP-1 expression elicited by E. coli LPS was inhibitable with TLR4-specific antibody and polymyxin B. These results indicate that invasive P. gingivalis stimulates TLR expression on the surface of endothelium and these primed cells respond to defined TLR-specific ligands.


Sign in / Sign up

Export Citation Format

Share Document