inflammatory gene
Recently Published Documents


TOTAL DOCUMENTS

837
(FIVE YEARS 177)

H-INDEX

69
(FIVE YEARS 10)

2022 ◽  
Vol 226 (1) ◽  
pp. S315-S316
Author(s):  
Joshua Monson ◽  
Jennifer Damicis ◽  
Elisabeth Dornisch ◽  
Rebecca Talley ◽  
Sarah McCormick ◽  
...  

2021 ◽  
Vol 67 (6) ◽  
pp. 404-416
Author(s):  
Motoko OARADA ◽  
Yuushi OKUMURA ◽  
Katsuya HIRASAKA ◽  
Kosuke SUGIURA ◽  
Nobuhiko TACHIBANA ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
A. N. M. Mamun-Or-Rashid ◽  
Tanzima Tarannum Lucy ◽  
Masayuki Yagi ◽  
Yoshikazu Yonei

Objective: Elevated levels of serum Nε-carboxymethyllysine (CML), a well-known advanced glycation end-product (AGE), were observed in patients with inflammation or osteoporosis. Astaxanthin was reported to possess anti-inflammatory and antioxidant effects. In the present study, we investigated the effects of commercially available dietary supplement AstaReal ACTR (ASR) capsule content as astaxanthin on CML-HSA-induced inflammatory and receptor activator of nuclear factor-kappa-Β ligand (RANKL)-induced osteoclastogenic gene expression. Methods: RAW 264.7 murine macrophage cells were stimulated with CML-HSA to trigger inflammatory gene expression and treated with either a vehicle control or varied concentrations of astaxanthin. Inflammatory gene expression was measured using an enzyme-linked immunosorbent assay (ELISA) or qPCR. We triggered osteoclastogenesis using RANKL, and osteoclastogenic gene expression was measured through tartrate-resistant acid phosphatase (TRAP) activity, staining, immunofluorescence, and qPCR analyses. Results: CML-HSA showed a stimulatory effect on inflammatory gene expression, and astaxanthin reduced the expression by at least two-fold. The levels of autoinflammatory gene expression were reduced by astaxanthin. The RANKL-induced osteoclastogenesis was significantly inhibited by astaxanthin, with reductions in the activation of nuclear factor-κB (NF-κB), the expression of NFATc1 (nuclear factor of activated T cells 1), multinucleated cell formation, and the expression of mature osteoclast marker genes. Conclusion: Astaxanthin has potential as a remedy for CML-HSA-induced inflammation and RANKL-induced excessive bone loss.


Author(s):  
Mario C. Manresa ◽  
Amanda Wu ◽  
Quan M. Nhu ◽  
Austin W. T. Chiang ◽  
Kevin Okamoto ◽  
...  

AbstractFibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTβR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTβR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT’s transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTβR-NIK-p52 NF-κB dominant pathway.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1318
Author(s):  
Melanie Rauen ◽  
Dandan Hao ◽  
Aline Müller ◽  
Eva Mückter ◽  
Leo Cornelius Bollheimer ◽  
...  

Age-related loss of skeletal muscle is associated with obesity and inflammation. In animal models, intramuscular fat deposits compromise muscle integrity; however, the relevant fat components that mediate muscular inflammation are not known. Previously, we hypothesized that free fatty acids (FFAs) may directly induce inflammatory gene expression in skeletal muscle cells of obese rats. Here, we examined this hypothesis in primary human skeletal myoblasts (SkMs) using multiplex expression analysis of 39 inflammatory proteins in response to different FFA species. Multiplex mRNA quantification confirmed that the IL6, IL1RA, IL4, LIF, CXCL8, CXCL1, CXCL12 and CCL2 genes were differentially regulated by saturated and unsaturated C16 or C18 FFAs. Fluorescence staining revealed that only saturated C16 and C18 strongly interfere with myoblast replication independent of desmin expression, mitochondrial abundance and oxidative activity. Furthermore, we addressed the possible implications of 71 human receptor tyrosine kinases (RTKs) in FFA-mediated effects. Phosphorylated EphB6 and TNK2 were associated with impaired myoblast replication by saturated C16 and C18 FFAs. Our data suggest that abundant FFA species in human skeletal muscle tissue may play a decisive role in the progression of sarcopenic obesity by affecting inflammatory signals or myoblast replication.


Author(s):  
Eunmi Hwang ◽  
Hyungkuen Kim ◽  
Anh Duc Truong ◽  
Sung-Jo Kim ◽  
Ki-Duk Song

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Minami Ando ◽  
Shigeyuki Magi ◽  
Masahide Seki ◽  
Yutaka Suzuki ◽  
Takeya Kasukawa ◽  
...  

AbstractInflammatory stimuli triggers the degradation of three inhibitory κB (IκB) proteins, allowing for nuclear translocation of nuclear factor-κB (NFκB) for transcriptional induction of its target genes. Of these three, IκBα is a well-known negative feedback regulator that limits the duration of NFκB activity. We sought to determine whether IκBα’s role in enabling or limiting NFκB activation is important for tumor necrosis factor (TNF)-induced gene expression in human breast cancer cells (MCF-7). Contrary to our expectations, many more TNF-response genes showed reduced induction than enhanced induction in IκBα knockdown cells. Mathematical modeling was used to investigate the underlying mechanism. We found that the reduced activation of some NFκB target genes in IκBα-deficient cells could be explained by the incoherent feedforward loop (IFFL) model. In addition, for a subset of genes, prolonged NFκB activity due to loss of negative feedback control did not prolong their transient activation; this implied a multi-state transcription cycle control of gene induction. Genes encoding key inflammation-related transcription factors, such as JUNB and KLF10, were found to be best represented by a model that contained both the IFFL and the transcription cycle motif. Our analysis sheds light on the regulatory strategies that safeguard inflammatory gene expression from overproduction and repositions the function of IκBα not only as a negative feedback regulator of NFκB but also as an enabler of NFκB-regulated stimulus-responsive inflammatory gene expression. This study indicates the complex involvement of IκBα in the inflammatory response to TNF that is induced by radiation therapy in breast cancer.


BMB Reports ◽  
2021 ◽  
Vol 54 (11) ◽  
pp. 545-550
Author(s):  
Gyoung Lim Park ◽  
Minkyung Park ◽  
Jeong-Ki Min ◽  
Young-Jun Park ◽  
Su Wol Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document