scholarly journals WITHDRAWN: Ginkgolide B reduces hepatic lipid accumulation and ameliorates nonalcoholic fatty liver disease in high-fat diet–induced obese mice

Oncotarget ◽  
2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Chia-Ling Wang ◽  
Chian-Jiun Liou ◽  
Shu-Ju Wu ◽  
Ciao-Han Wei ◽  
Wen-Chung Huang
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yong Zou ◽  
Zhengtang Qi

Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.


2020 ◽  
Vol 56 (36) ◽  
pp. 4922-4925 ◽  
Author(s):  
Zhongyan Wang ◽  
Chuanrui Ma ◽  
Yuna Shang ◽  
Lijun Yang ◽  
Jing Zhang ◽  
...  

An ingenious co-assembled nanosystem based on fenofibrate and ketoprofen peptide for the dual-targeted treatment of NAFLD by reducing hepatic lipid accumulation and inflammatory responses.


2020 ◽  
Author(s):  
Matthew C. Sinton ◽  
Baltasar Lucendo Villarin ◽  
Jose Meseguer Ripolles ◽  
Sara Wernig-Zorc ◽  
John P. Thomson ◽  
...  

SummaryNonalcoholic fatty liver disease (NAFLD) affects ~88% of obese individuals and is characterised by hepatic lipid accumulation. Mitochondrial metabolic dysfunction is a feature of NAFLD. We used a human pluripotent stem cell-based system to determine how mitochondrial dysfunction is linked to hepatic lipid accumulation. We induced lipid accumulation in hepatocyte-like cells (HLCs) using lactate, pyruvate and octanoate (LPO). Transcriptomic analysis revealed perturbation of mitochondrial respiratory pathways in LPO exposed cells. Using 13C isotopic tracing, we identified truncation of the TCA cycle in steatotic HLCs. We show that increased purine nucleotide cycle (PNC) activity fuels fumarate accumulation and drives lipid accumulation in steatotic cells. These findings provide new insights into the pathogenesis of hepatic steatosis and may lead to an improved understanding of the metabolic and transcriptional rewiring associated with NAFLD.


2022 ◽  
Author(s):  
Jingjing Zhang ◽  
Xiaoxuan Ma ◽  
Daidi Fan

Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disease with complex etiology, which is considered as one of the main causes of hepatocellular carcinoma (HCC). The incidence of NAFLD...


2017 ◽  
Vol 82 (7) ◽  
pp. 1765-1774 ◽  
Author(s):  
Jae Hwan Kim ◽  
Sujin Suk ◽  
Woo Jung Jang ◽  
Chang Hyung Lee ◽  
Jong-Eun Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document