scholarly journals Aspect-Category based Sentiment Analysis with Hierarchical Graph Convolutional Network

Author(s):  
Hongjie Cai ◽  
Yaofeng Tu ◽  
Xiangsheng Zhou ◽  
Jianfei Yu ◽  
Rui Xia
2021 ◽  
Vol 2083 (4) ◽  
pp. 042044
Author(s):  
Zuhua Dai ◽  
Yuanyuan Liu ◽  
Shilong Di ◽  
Qi Fan

Abstract Aspect level sentiment analysis belongs to fine-grained sentiment analysis, w hich has caused extensive research in academic circles in recent years. For this task, th e recurrent neural network (RNN) model is usually used for feature extraction, but the model cannot effectively obtain the structural information of the text. Recent studies h ave begun to use the graph convolutional network (GCN) to model the syntactic depen dency tree of the text to solve this problem. For short text data, the text information is not enough to accurately determine the emotional polarity of the aspect words, and the knowledge graph is not effectively used as external knowledge that can enrich the sem antic information. In order to solve the above problems, this paper proposes a graph co nvolutional neural network (GCN) model that can process syntactic information, know ledge graphs and text semantic information. The model works on the “syntax-knowled ge” graph to extract syntactic information and common sense information at the same t ime. Compared with the latest model, the model in this paper can effectively improve t he accuracy of aspect-level sentiment classification on two datasets.


Author(s):  
Erfan Ghadery ◽  
Sajad Movahedi ◽  
Heshaam Faili ◽  
Azadeh Shakery

The advent of the Internet has caused a significant growth in the number of opinions expressed about products or services on e-commerce websites. Aspect category detection, which is one of the challenging subtasks of aspect-based sentiment analysis, deals with categorizing a given review sentence into a set of predefined categories. Most of the research efforts in this field are devoted to English language reviews, while there are a large number of reviews in other languages that are left unexplored. In this paper, we propose a multilingual method to perform aspect category detection on reviews in different languages, which makes use of a deep convolutional neural network with multilingual word embeddings. To the best of our knowledge, our method is the first attempt at performing aspect category detection on multiple languages simultaneously. Empirical results on the multilingual dataset provided by SemEval workshop demonstrate the effectiveness of the proposed method1.


2021 ◽  
pp. 1-1
Author(s):  
Bo Jiang ◽  
Xixi Wang ◽  
Aihua Zheng ◽  
Jin Tang ◽  
Bin Luo

2020 ◽  
Author(s):  
Pengkun Zhu ◽  
Hao Jiang ◽  
Chao Zhang ◽  
Menfang Liao ◽  
Haojin Hu

2021 ◽  
pp. 293-304
Author(s):  
Changxiang He ◽  
Shuting Liu ◽  
Ying Zhao ◽  
Xiaofei Qin ◽  
Jiayuan Zeng ◽  
...  

2021 ◽  
Author(s):  
Danh Bui-Thi ◽  
Emmanuel Rivière ◽  
Pieter Meysman ◽  
Kris Laukens

AbstractMotivationConvolutional neural networks have enabled unprecedented breakthroughs in a variety of computer vision tasks. They have also drawn much attention from other domains, including drug discovery and drug development. In this study, we develop a computational method based on convolutional neural networks to tackle a fundamental question in drug discovery and development, i.e. the prediction of compound-protein interactions based on compound structure and protein sequence. We propose a hierarchical graph convolutional network (HGCN) to encode small molecules. The HGCN aggregates a molecule embedding from substructure embeddings, which are synthesized from atom embeddings. As small molecules usually share substructures, computing a molecule embedding from those common substructures allows us to learn better generic models. We then combined the HGCN with a one-dimensional convolutional network to construct a complete model for predicting compound-protein interactions. Furthermore we apply an explanation technique, Grad-CAM, to visualize the contribution of each amino acid into the prediction.ResultsExperiments using different datasets show the improvement of our model compared to other GCN-based methods and a sequence based method, DeepDTA, in predicting compound-protein interactions. Each prediction made by the model is also explainable and can be used to identify critical residues mediating the interaction.Availability and implementationhttps://github.com/banhdzui/cpi_hgcn.git


Sign in / Sign up

Export Citation Format

Share Document