scholarly journals Numerical Simulation of Heat Transfer and Determination of Thermal and Hydraulic Characteristics in a Coiled Test Bench Heat Exchanger

Author(s):  
В.Ю. Александров ◽  
◽  
А.П. Королева ◽  
Н.В. Кукшинов ◽  
М.С. Французов ◽  
...  
2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Witold Rybiński ◽  
Jarosław Mikielewicz

Abstract This paper presents a new statistical, nondestructive method for determination of the experimental channels clogging rate in a mini- or microchannel heat exchanger. Channels clogging may be caused by inaccurate fabrication of the heat exchanger or by fouling of microchannels during exploitation. The theoretical model, used in this method, predicts a significant increase of the pressure drop as the number of clogged microchannels increases. However, the exchanger’s heat transfer rate decreases moderately. It may partly be caused by the additional heat transfer in metal walls, bypassing the inactive, clogged microchannels. The presented method was tested on the prototype of a microchannel heat exchanger. The experimental values of the pressure drop of the hot and cold water flows are 2–5 times higher than the values predicted for clean microchannels. The experimental values for the pressure drop and heat transfer are in good agreement with the values calculated by the use of the theoretical model. The presented statistical method gives two channels clogging rates (for the “hot” and “cold” channels) obtained during normal exploitation without cutting (destroying) the heat exchanger.


Author(s):  
Koji Iiyama ◽  
Akiko Kaneko ◽  
Yutaka Abe ◽  
Yutaka Suzuki

At present, a microchannel heat exchanger is requested to achieve high efficiency in small size energy equipments. In order to clarify the heat transfer mechanism in a microchannel heat exchanger, knowledge on the thermal hydraulic characteristics of condensation flow in the channels is essential. However, study on the thermal hydraulic characteristics of condensation flow in a microchannel is hardly conducted except visualization of flow patterns. Objectives of the present study are to estimate the heat transfer performance of the present device and to observe the condensation behavior of vapor flow to clarify the thermal hydraulic characteristics of condensation flow in a capillary tube. As the results, it is confirmed that the microchannel heat exchanger realizes heat exchange of 7 kW when phase changes. In a single capillary glass tube as a simulated unit microchannel, the annular flow, the injection flow and the bubbly flow in a capillary tube are observed. According to the comparison of the present device and the glass tube experiment, it is suggested that the flow structure in the microchannel heat exchanger is almost same as that in the glass capillary tube.


1980 ◽  
Vol 102 (2) ◽  
pp. 199-201 ◽  
Author(s):  
M. A. Ait-Ali ◽  
D. J. Wilde

In constrained optimization, valuable analytical insight can be gained by focusing attention on the terms of a problem before obtaining any solution particular to the numerical values of the given parameters. The necessary optimality conditions derived from the first semi-log derivatives may give a general result useful as a design rule for all similar problems. This approach is illustrated in the determination of optimal area allocation among the stages of two different multistage heat exchanger systems. This area allocation minimizes the total heat transfer area of the system with respect to: (1) interstage temperature for a given overall temperature change of the process stream; (2) “base area,” newly defined here as the ratio of capacity rate to the overall heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document