Investigation of UWB RF signal technology for solving indoor positioning problem

Author(s):  
A.R. Novichkov ◽  
I.K. Goncharov ◽  
A.Yu. Egorushkin ◽  
N.N. Faschevsky

The article considers the process of developing a local positioning system using an ultra-wideband radio signal system and its integration with a strapdown inertial navigation system (SINS). A system based on Ultra-Wide Band (UWB) technology is used as a radio navigation system. An overview of the developed experimental integrated navigation system model is presented. Algorithms for calculating the position using the propagation time of the radio signal are used to obtain a navigation solution. An analysis of the accuracy of Single-Sided Two-Way Ranging and Double-Sided Two-Way Ranging algorithms using a UWB radio module is presented. The modeling errors of the inertial navigation system were performed. The maximum permissible parameters of the sensitive element errors were obtained for integration with the radio navigation system. The scheme of integration of the navigation solution of the UWB and SINS systems is determined.

Author(s):  
Yuan Xu ◽  
Hamid Reza Karimi ◽  
Yueyang Li ◽  
Fengyu Zhou ◽  
Lili Bu

To satisfy the increasing demands of the accuracy for the human localization, in this work, we propose a pedestrian tracking method by tightly coupling recent inertial navigation system–based and ultra-wideband–based measurements. In this mode, the difference between the distances derived from the inertial navigation system–based and ultra-wideband–based system is used as the observation of the data fusion filter. Moreover, in order to improve the performance of the extended finite impulse response filter, which depends on the averaging horizon ([Formula: see text]) when the error state vector ([Formula: see text]) is determined due to the model, the extended finite impulse response filter bank is employed to be the fusion center for pedestrian tracking, which used the Mahalanobis distance to find the optimal [Formula: see text] at each time index [Formula: see text]. Test experiments illustrate that the extended finite impulse response filter bank–based tightly coupled inertial navigation system/ultra-wideband–integrated method is able to achieve real-time estimation, and its accuracy is similar to the extended finite impulse response with the ideal [Formula: see text] which is calculated off-line.


2021 ◽  
pp. 52-64
Author(s):  
I.A. Nagin ◽  
A.Yu. Shatilov ◽  
T.A. Muhamedzyanov ◽  
Yu.M. Inchagov

To improve the reliability and accuracy of navigation solution, the integration of the satellite navigation receiver with the inertial navigation system is used. These systems have complementary characteristics. An important part of the combined systems is the integration algorithm, which largely determines the final characteristics. The synthesis of such an algorithm for velocity, attitude and the errors of the inertial measuring unit estimation has been carried out. The algorithm is implemented in the software of the prototype of the inertial-satellite navigation system. The results of the experimental evaluation of algorithm’s characteristics for automotive dynamics are shown.


2020 ◽  
Vol 75 (4) ◽  
pp. 336-341
Author(s):  
A. V. Rzhevskiy ◽  
O. V. Snigirev ◽  
Yu. V. Maslennikov ◽  
V. Yu. Slobodchikov

Sign in / Sign up

Export Citation Format

Share Document