propagation time
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 132)

H-INDEX

25
(FIVE YEARS 6)

2022 ◽  
Vol 262 ◽  
pp. 107428
Author(s):  
Yifei Li ◽  
Shengzhi Huang ◽  
Hanye Wang ◽  
Xudong Zheng ◽  
Qiang Huang ◽  
...  

Author(s):  
Jiqiu Li ◽  
Yinfei Wang ◽  
Yungang Li ◽  
Wenting Ming ◽  
Yunshu Long ◽  
...  

Abstract Information on the relationship between meteorological drought (MD) and hydrological drought (HD) can serve as the basis for early warning and mitigation of HD. In this study, the standardized precipitation index and standardized streamflow index were applied to characterize MD and HD, respectively, and the evolution characteristics of MD and HD were assessed in the upstream regions of the Lancang–Mekong River (ULMR) from 1961 to 2015. Furthermore, the relationship between MD and HD was investigated using the Pearson correlation and wavelet analysis. The results revealed that (1) there was no significant change in the annual precipitation and streamflow; however, the ULMR experienced successive alternations of wet and dry episodes; (2) the average duration and magnitude of MD and HD increased with an increase in the time scale, while the duration and magnitude of MD lengthened and amplified in HD; (3) MD more likely propagated to HD as the time scale increased, and the propagation time exhibited marked seasonality, which was shorter in the wet season and longer in the dry season; and (4) there was a positive correlation between MD and HD; these two types of drought exhibited similar resonance frequency and phase-shift characteristics, and HD lagged behind MD.


2021 ◽  
Author(s):  
Lan Ma ◽  
Qiang Huang ◽  
Shengzhi Huang ◽  
Dengfeng Liu ◽  
Guoyong Leng ◽  
...  

Abstract According to the widely accepted definition of drought, meteorological and hydrological droughts originally develop from rainfall and runoff deficits, respectively. Runoff deficit is mainly derived from rainfall deficit, and the propagation from meteorological drought to hydrological drought is critical for agricultural water management. Nevertheless, the characteristics and dynamics of drought propagation in the spatiotemporal scale remain unresolved. To this end, the characteristics and dynamics of drought propagation in different seasons and their linkages with key forcing factors are evaluated. In this study, meteorological and hydrological droughts are characterized by the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI), respectively. Propagation time is identified by the corresponding timescale of the maximum correlation coefficient between the SPI and the SRI. Then, a 20-year sliding window is adopted to explore the propagation dynamic in various seasons. Furthermore, the multiple linear regression model is established to quantitatively explore the influence of meteorological factors, underlying surface features and teleconnection factors on the propagation time variations. The Wei River Basin, a typical Loess Plateau watershed in China, is selected as a case study. Results indicate the following: (1) the propagation time from meteorological to hydrological drought is shorter in summer (2 months) and autumn (3 months), whereas it is longer in spring (8 months) and winter (13 months). Moreover, the propagation rates exhibit a decreasing trend in warm seasons, which, however, show an increasing trend in cold seasons; (2) a significant slowing propagation in autumn is mainly caused by the decreasing soil moisture and precipitation, whereas the non-significant tendency in summer is generally induced by the offset between insignificant increasing precipitation and significant decreasing soil moisture; (3) the replenishment from streamflow to groundwater in advance prompts the faster propagation from meteorological to hydrological drought in spring and winter and (4) teleconnection factors have strong influences on the propagation in autumn, in which Arctic Oscillation, El Niño-Southern Oscillation and Pacific Decadal Oscillation mainly affect participation, arid index and soil moisture, thereby impacting drought propagation.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhixia Zheng ◽  
Limei Bai ◽  
Shaoquan Li

Objective. Accurate prediction of the rise of blood pressure is essential for the hypertensive intracerebral hemorrhage. This study uses the hybrid feature convolution neural network to establish the blood pressure model instead of the traditional method of pulse waves. Methods. The pulse waves of 100 patients were collected, and the pulse wave was decomposed into three bell wave compound forms to obtain the accurate pulse wave propagation time. Then, the mixed feature convolution neural network model ABP-net was proposed, which combined the pulse wave propagation time characteristics with the pulse wave waveform characteristics automatically extracted by one-dimensional convolution to predict the arterial blood pressure. Finally, according to the prediction results, 20 patients were treated before the high blood pressure appeared (model group), and another 20 patients with a daily fixed treatment scheme were selected as the control group. Results. In 80 training sets, compared with linear regression and the random forest method, the hybrid feature convolution neural network has higher accuracy in predicting blood pressure. In 20 test sets, the blood pressure error was eliminated within 5 mmHg. The total effective rate in the model group and the control group was 95.0% and 85.0%, respectively ( P = 0.035 ). After treatment, the scores of self-care ability of daily life and limb motor function in the model group were higher than those in the control group ( P < 0.05 ). There were 8 cases (13.6%) in the model group and 17 cases (28.3%) in the control group due to the recurrence of cerebrovascular accident ( P = 0.043 ). Conclusion. Drug treatment guided by a blood pressure model based on a hybrid feature convolution neural network for patients with hypertensive cerebral hemorrhage can significantly and smoothly reduce blood pressure, promote the health recovery, and reduce the occurrence of cerebrovascular accidents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chu-Fang Yang ◽  
Wu-Cheng Chi ◽  
Hans van Haren ◽  
Ching-Ren Lin ◽  
Ban-Yuan Kuo

AbstractTemperature is used to trace ocean density variations, and reveals internal waves and turbulent motions in the deep ocean, called ‘internal motions.’ Ambient temperature detected by geophysical differential pressure gauges (DPGs) may provide year-long, complementary observations. Here, we use data from four DPGs fixed on the ocean bottom and a high-resolution temperature sensor (T-sensor) 13 m above the seafloor as a square-kilometer array deployed offshore ~ 50 km east of Taiwan facing the open Pacific Ocean to examine the impact of temperature on DPG signals related to internal motions. The DPG signals correlate with T-sensor temperature variations between 0.002 and 0.1 mHz, but have time shifts partially caused by slow thermal conduction from the ambient seafloor to the DPG chamber and partially by internal motion propagation time across the array. Applying beamforming-frequency-wavenumber analysis and linear regression to the arrayed T-sensor and DPG data, we estimate the propagating slowness of the internal motions to be between 0.5 and 7.4 s m−1 from the northwest and northeast quadrants of the array. The thermal relaxation time of the DPGs is within 103–104 s. This work shows that a systematic scan of DPG data at frequencies < 0.1 mHz may help shed light on patterns of internal wave propagation in the deep ocean, especially in multi-scale arrays.


Author(s):  
A.R. Novichkov ◽  
I.K. Goncharov ◽  
A.Yu. Egorushkin ◽  
N.N. Faschevsky

The article considers the process of developing a local positioning system using an ultra-wideband radio signal system and its integration with a strapdown inertial navigation system (SINS). A system based on Ultra-Wide Band (UWB) technology is used as a radio navigation system. An overview of the developed experimental integrated navigation system model is presented. Algorithms for calculating the position using the propagation time of the radio signal are used to obtain a navigation solution. An analysis of the accuracy of Single-Sided Two-Way Ranging and Double-Sided Two-Way Ranging algorithms using a UWB radio module is presented. The modeling errors of the inertial navigation system were performed. The maximum permissible parameters of the sensitive element errors were obtained for integration with the radio navigation system. The scheme of integration of the navigation solution of the UWB and SINS systems is determined.


2021 ◽  
Vol 930 ◽  
Author(s):  
Jiarui Li ◽  
Kun Xue ◽  
Junsheng Zeng ◽  
Baolin Tian ◽  
Xiaohu Guo

This paper investigates the shock-induced instability of the interfaces between gases and dense granular media with finite length via the coarse-grained compressible computational fluid dynamics–discrete parcel method. Despite generating a typical spike-bubble structure reminiscent of the Richtmyer–Meshkov instability (RMI), the shock-driven granular instability (SDGI) is governed by fundamentally different mechanisms. Unlike the RMI arising from baroclinic vorticity deposition on the interface, the SDGI is closely associated with the interfacial and bulk granular dynamics, which evolve with the transient coupling between particles and gases. Consequently, the SDGI follows a growth law distinctly different from that of the RMI, namely a semilinear slow regime followed by an exponentially expedited regime and a quadratic asymptotic regime. We further establish the instability criteria of the SDGI for granular media with infinite and finite lengths, which do not exist in the RMI. A scaling growth law of the SDGI for dense granular media with finite length is derived by normalizing the time with the rarefaction propagation time, which successfully collapses the data from cases with varying shock strength, particle column length and particle volume fraction and ought to hold for granular media with varying particle parameters. The effect of the initial perturbation magnitude can be properly considered in the scaling growth law by incorporating it into the length normalization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. A. Ivanov ◽  
Anatoli S. Kheifets ◽  
Kyung Taec Kim

AbstractWe study propagation effects due to the finite speed of light in ionization of extended molecular systems. We present a general quantitative theory of these effects and show under which conditions such effects should appear. The finite speed of light propagation effects are encoded in the non-dipole terms of the time-dependent Shrödinger equation and display themselves in the photoelectron momentum distribution projected on the molecular axis. Our numerical modeling for the $$\hbox {H}_{2}^{+}$$ H 2 + molecular ion and the $$\hbox {Ne}_2$$ Ne 2 dimer shows that the finite light propagation time from one atomic center to another can be accurately determined in a table top laser experiment which is much more readily accessible than the ground breaking synchrotron measurement by Grundmann et al. (Science 370:339, 2020).


2021 ◽  
Vol 150 (5) ◽  
pp. 3228-3237
Author(s):  
Matthias Rutsch ◽  
Alexander Unger ◽  
Gianni Allevato ◽  
Jan Hinrichs ◽  
Axel Jäger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document