local positioning system
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 67)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
A.R. Novichkov ◽  
I.K. Goncharov ◽  
A.Yu. Egorushkin ◽  
N.N. Faschevsky

The article considers the process of developing a local positioning system using an ultra-wideband radio signal system and its integration with a strapdown inertial navigation system (SINS). A system based on Ultra-Wide Band (UWB) technology is used as a radio navigation system. An overview of the developed experimental integrated navigation system model is presented. Algorithms for calculating the position using the propagation time of the radio signal are used to obtain a navigation solution. An analysis of the accuracy of Single-Sided Two-Way Ranging and Double-Sided Two-Way Ranging algorithms using a UWB radio module is presented. The modeling errors of the inertial navigation system were performed. The maximum permissible parameters of the sensitive element errors were obtained for integration with the radio navigation system. The scheme of integration of the navigation solution of the UWB and SINS systems is determined.


2021 ◽  
Author(s):  
Luca Santoro ◽  
Davide Brunelli ◽  
daniele fontanelli ◽  
matteo nardello

Determining assets position with high accuracy and scalability is one of the most investigated technology on the market. The accuracy provided by satellites-based positioning systems (i.e., GLONASS or Galileo) is not always sufficient when a decimeter-level accuracy is required or when there is the need of localising entities that operate inside indoor environments. Scalability is also a recurrent problem when dealing with indoor positioning systems. This paper presents an innovative UWB Indoor GPS-Like local positioning system able to tracks any number of assets without decreasing measurements update rate. To increase the system’s accuracy the mathematical model and the sources of uncertainties are investigated. Results highlight how the proposed implementation provides positioning information with an absolute maximum error below 20 cm. Scalability is also resolved thanks to DTDoA transmission mechanisms not requiring an active role from the asset to be tracked.


2021 ◽  
Author(s):  
Luca Santoro ◽  
Davide Brunelli ◽  
daniele fontanelli ◽  
matteo nardello

Determining assets position with high accuracy and scalability is one of the most investigated technology on the market. The accuracy provided by satellites-based positioning systems (i.e., GLONASS or Galileo) is not always sufficient when a decimeter-level accuracy is required or when there is the need of localising entities that operate inside indoor environments. Scalability is also a recurrent problem when dealing with indoor positioning systems. This paper presents an innovative UWB Indoor GPS-Like local positioning system able to tracks any number of assets without decreasing measurements update rate. To increase the system’s accuracy the mathematical model and the sources of uncertainties are investigated. Results highlight how the proposed implementation provides positioning information with an absolute maximum error below 20 cm. Scalability is also resolved thanks to DTDoA transmission mechanisms not requiring an active role from the asset to be tracked.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7051
Author(s):  
José Manuel Villadangos ◽  
Jesús Ureña ◽  
Juan Jesús García-Domínguez ◽  
Ana Jiménez-Martín ◽  
Álvaro Hernández ◽  
...  

Ultrasonic local positioning systems (ULPS) have been brought to the attention of researchers as one of the possibilities that can be used for indoor localization. Acoustic systems combine a suitable trade-off between precision, ease of development, and cost. This work proposes a method for measuring the time of arrival of encoded emissions from a set of ultrasonic beacons, which are used to implement an accurate ULPS. This method uses the generalized cross-correlation technique with PHAT filter and weighting factor β (GCC-PHAT-β). To improve the performance of the GCC-PHAT-β in encoded emission detection, the employment is proposed of mixed-medium multiple-access techniques, based on code division and time division multiplexing of beacon emissions (CDMA and TDMA respectively), and to dynamically adjust the PHAT filter weighting factor. The receiver position is obtained by hyperbolic multilateration from the time differences of arrival (TDoA) between a reference beacon and the rest, thus avoiding the need for receiver synchronization. The results show how the dynamic adaptation of the weighting factor significantly reduces positioning errors from 20 cm to 2 cm in 80% of measurements. The simulated and real experiments prove that the proposed algorithms improve the performance of the ULPS in situations with lower signal-to-noise ratios (SNR) than 0 dB and in environments where the multipath effect makes it difficult to correctly detect the encoded ultrasonic emissions.


2021 ◽  
Author(s):  
Fernando Palafox ◽  
Lyndsay Ruane ◽  
Scott Palo ◽  
Dennis Akos

2021 ◽  
Vol 52 (3) ◽  
Author(s):  
Volodymyr Bulgakov ◽  
Simone Pascuzzi ◽  
Semjons Ivanovs ◽  
Volodymyr Kuvachov ◽  
Yulia Postol ◽  
...  

Controlled traffic farming allows to minimize traffic-induced soil compaction by a permanent separation of the crop zone from the traffic lanes used by wide span tractors. The Authors developed an agricultural wide span vehicle equipped with a skid equipment for turning and an automatic driving system prototype based on a laser beam. The aim of this work was to study the kinematic conditions that control the steering of this machine. Furthermore, the accuracy and the maximum delay time of the signal transmission by the automatic driving system of the set-up was also assessed. In comparison with crawler tractors, the turning of the agricultural wide span vehicle needs a smaller difference in the moments applied to its right- and left-side wheels. For the predetermined accuracy of the beam position relative to the plant rows, ±ds = ±0.025 m, the accuracy of the direction of the laser beam at a distance S=200 m should not be more than ±0.07° and ±0.0014°, considering a run length of 1000 m. Furthermore, at a speed V=2.5 m s–1 a trajectory deviation φ≤5° requires a topmost delay time of the control signal of Δtmax=0.11 s is required.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6537
Author(s):  
Elena Aparicio-Esteve ◽  
Jesús Ureña ◽  
Álvaro Hernández ◽  
Daniel Pizarro ◽  
David Moltó

The research interest on location-based services has increased during the last years ever since 3D centimetre accuracy inside intelligent environments could be confronted with. This work proposes an indoor local positioning system based on LED lighting, transmitted from a set of beacons to a receiver. The receiver is based on a quadrant photodiode angular diversity aperture (QADA) plus an aperture placed over it. This configuration can be modelled as a perspective camera, where the image position of the transmitters can be used to recover the receiver’s 3D pose. This process is known as the perspective-n-point (PnP) problem, which is well known in computer vision and photogrammetry. This work investigates the use of different state-of-the-art PnP algorithms to localize the receiver in a large space of 2 × 2 m2 based on four co-planar transmitters and with a distance from transmitters to receiver up to 3.4 m. Encoding techniques are used to permit the simultaneous emission of all the transmitted signals and their processing in the receiver. In addition, correlation techniques (match filtering) are used to determine the image points projected from each emitter on the QADA. This work uses Monte Carlo simulations to characterize the absolute errors for a grid of test points under noisy measurements, as well as the robustness of the system when varying the 3D location of one transmitter. The IPPE algorithm obtained the best performance in this configuration. The proposal has also been experimentally evaluated in a real setup. The estimation of the receiver’s position at three particular points for roll angles of the receiver of γ={0°, 120°, 210° and 300°} using the IPPE algorithm achieves average absolute errors and standard deviations of 4.33 cm, 3.51 cm and 28.90 cm; and 1.84 cm, 1.17 cm and 19.80 cm in the coordinates x, y and z, respectively. These positioning results are in line with those obtained in previous work using triangulation techniques but with the addition that the complete pose of the receiver (x, y, z, α, β, γ) is obtained in this proposal.


2021 ◽  
Vol 12 (1) ◽  
pp. 18-27
Author(s):  
Niam Tamami ◽  
Bambang Sumantri ◽  
Prima Kristalina

An autonomous vertical take-off and landing (VTOL) must be supported with an accurate positioning system, especially for autonomous take-off, landing, and other tasks in small area. This paper presents a novel method of small local outdoor positioning system for localizing the area of dropping and landing of autonomous VTOL by utilizing the low-cost precision ultra-wide band (UWB) ranging system. We compared symmetrical single sided-two way ranging (SSS-TWR), symmetrical double sided-two way ranging (SDS-TWR), and asymmetrical double sided-two way ranging (ADS-TWR) methods to get precision ranging measurement on UWB radio module. ADS-TWR was superior to others by resulting in minimum distance error. The ADS-TWR average error was 1.38 % (35.88 cm), SDS-TWR average error was 1.83 % (47.58 cm), and SSS-TWR average error was 2.73 % (70.98 cm). Furthermore, the trilateration method was utilized to obtain the local position of the autonomous VTOL. The trilateration method successfully implemented autonomous VTOL quadcopter positioning in a small local outdoor area (20 m x 30 m). Autonomous VTOL has been able to drop seven payloads in seven areas (2 m x 2 m) and landed in the home position (3 m x 3 m) successfully.


2021 ◽  
Vol 11 (15) ◽  
pp. 6805
Author(s):  
Khaoula Mannay ◽  
Jesús Ureña ◽  
Álvaro Hernández ◽  
José M. Villadangos ◽  
Mohsen Machhout ◽  
...  

Indoor positioning systems have become a feasible solution for the current development of multiple location-based services and applications. They often consist of deploying a certain set of beacons in the environment to create a coverage volume, wherein some receivers, such as robots, drones or smart devices, can move while estimating their own position. Their final accuracy and performance mainly depend on several factors: the workspace size and its nature, the technologies involved (Wi-Fi, ultrasound, light, RF), etc. This work evaluates a 3D ultrasonic local positioning system (3D-ULPS) based on three independent ULPSs installed at specific positions to cover almost all the workspace and position mobile ultrasonic receivers in the environment. Because the proposal deals with numerous ultrasonic emitters, it is possible to determine different time differences of arrival (TDOA) between them and the receiver. In that context, the selection of a suitable fusion method to merge all this information into a final position estimate is a key aspect of the proposal. A linear Kalman filter (LKF) and an adaptive Kalman filter (AKF) are proposed in that regard for a loosely coupled approach, where the positions obtained from each ULPS are merged together. On the other hand, as a tightly coupled method, an extended Kalman filter (EKF) is also applied to merge the raw measurements from all the ULPSs into a final position estimate. Simulations and experimental tests were carried out and validated both approaches, thus providing average errors in the centimetre range for the EKF version, in contrast to errors up to the meter range from the independent (not merged) ULPSs.


Sign in / Sign up

Export Citation Format

Share Document