scholarly journals Sequent Systems without Improper Derivations

Author(s):  
Katsumi Sasaki

In the natural deduction system for classical propositional logic given by G. Gentzen, there are some inference rules with assumptions discharged by the rule. D. Prawitz calls such inference rules improper, and others proper. Improper inference rules are more complicated and are often harder to understand than the proper ones. In the present paper, we distinguish between proper and improper derivations by using sequent systems. Specifically, we introduce a sequent system \(\vdash_{\bf Sc}\) for classical propositional logic with only structural rules, and prove that \(\vdash_{\bf Sc}\) does not allow improper derivations in general. For instance, the sequent \(\Rightarrow p \to q\) cannot be derived from the sequent \(p \Rightarrow q\) in \(\vdash_{\bf Sc}\). In order to prove the failure of improper derivations, we modify the usual notion of truth valuation, and using the modified valuation, we prove the completeness of \(\vdash_{\bf Sc}\). We also consider whether an improper derivation can be described generally by using \(\vdash_{\bf Sc}\).

2018 ◽  
Vol 13 (3) ◽  
pp. 509-540 ◽  
Author(s):  
MINGHUI MA ◽  
AHTI-VEIKKO PIETARINEN

AbstractThis article investigates Charles Peirce’s development of logical calculi for classical propositional logic in 1880–1896. Peirce’s 1880 work on the algebra of logic resulted in a successful calculus for Boolean algebra. This calculus, denoted byPC, is here presented as a sequent calculus and not as a natural deduction system. It is shown that Peirce’s aim was to presentPCas a sequent calculus. The law of distributivity, which Peirce states in 1880, is proved using Peirce’s Rule, which is a residuation, inPC. The transitional systems of the algebra of the copula that Peirce develops since 1880 paved the way to the 1896 graphical system of the alpha graphs. It is shown how the rules of the alpha system reinterpret Boolean algebras, answering Peirce’s statement that logical graphs supply a new system of fundamental assumptions to logical algebra. A proof-theoretic analysis is given for the connection betweenPCand the alpha system.


2020 ◽  
Author(s):  
Mirjana Borisavljević

Abstract In derivations of a sequent system, $\mathcal{L}\mathcal{J}$, and a natural deduction system, $\mathcal{N}\mathcal{J}$, the trails of formulae and the subformula property based on these trails will be defined. The derivations of $\mathcal{N}\mathcal{J}$ and $\mathcal{L}\mathcal{J}$ will be connected by the map $g$, and it will be proved the following: an $\mathcal{N}\mathcal{J}$-derivation is normal $\Longleftrightarrow $ it has the subformula property based on trails $\Longleftrightarrow $ its $g$-image in $\mathcal{L}\mathcal{J}$ is without maximum cuts $\Longrightarrow $ that $g$-image has the subformula property based on trails. In $\mathcal{L}\mathcal{J}$-derivations, another type of cuts, sub-cuts, will be introduced, and it will be proved the following: all cuts of an $\mathcal{L}\mathcal{J}$-derivation are sub-cuts $\Longleftrightarrow $ it has the subformula property based on trails.


1972 ◽  
Vol 37 (4) ◽  
pp. 696-702 ◽  
Author(s):  
John Corcoran

In previous articles ([4], [5]) it has been shown that the deductive system developed by Aristotle in his “second logic” (cf. Bochenski [2, p. 43]) is a natural deduction system and not an axiomatic system as previously had been thought [6]. It was also pointed out that Aristotle's logic is self-sufficient in two senses: First, that it presupposed no other logical concepts, not even those of propositional logic; second, that it is (strongly) complete in the sense that every valid argument formable in the language of the system is demonstrable by means of a formal deduction in the system. Review of the system makes the first point obvious. The purpose of the present article is to prove the second. Strong completeness is demonstrated for the Aristotélian system.


2016 ◽  
Vol 45 (1) ◽  
Author(s):  
Mirjana Ilić

A natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.


1966 ◽  
Vol 31 (3) ◽  
pp. 322-324 ◽  
Author(s):  
Raymond M. Smullyan

Our terminology and notation is the same as that of [1], of which this note is a sequel.We wish to show that if we take the natural deduction system (N) described in [1], and delete the rules for the quantifiers, we obtain a complete system for propositional logic. [Of course we now construe “X”, “Y”, “Z” as syntactic variables ranging over formulas of propositional logic, rather than sentences of quantification theory.] Moreover the system serves as a neat decision procedure.


2012 ◽  
Vol 5 (4) ◽  
pp. 720-730 ◽  
Author(s):  
BARTELD KOOI ◽  
ALLARD TAMMINGA

AbstractTaking our inspiration from modal correspondence theory, we present the idea of correspondence analysis for many-valued logics. As a benchmark case, we study truth-functional extensions of the Logic of Paradox (LP). First, we characterize each of the possible truth table entries for unary and binary operators that could be added to LP by an inference scheme. Second, we define a class of natural deduction systems on the basis of these characterizing inference schemes and a natural deduction system for LP. Third, we show that each of the resulting natural deduction systems is sound and complete with respect to its particular semantics.


Sign in / Sign up

Export Citation Format

Share Document