scholarly journals Patterns of Dispersion, Movement and Feeding of the Sea Urchin Lytechinus variegatus, and the Potential Implications for Grazing Impact on Live Seagrass

2021 ◽  
Vol 32 ◽  
pp. 8-18
Author(s):  
Adrianna Parson ◽  
Joseph Dirnberger ◽  
Troy Mutchler

The sea urchin Lytechinus variegatus is a known grazer of both living and dead tissue of turtlegrass, Thalassia testudinum, occasionally denuding large areas of seagrass. Field studies have attempted to assess effects of herbivory on seagrass by enclosing urchins at various densities. However, it is unclear how unrestricted urchins affect seagrass at lower densities more typically observed in the field. This study describes movement, feeding, and distribution of L. variegatus within beds of T. testudinum in St. Joseph Bay, Florida (USA) to quantify this urchin’s impact as a seagrass grazer. Urchins were absent from portions of seagrass beds closest to shore, present at low densities midway across the bed, and at highest densities (up to ~5 individuals/m2) at the offshore edge of the bed. Urchins tended not to aggregate, moved twice as rapidly where seagrass cover was reduced, and moved > 20X faster when placed in areas of open sand. Dead seagrass tissue occurred 4—30X more frequently on oral surfaces than living seagrass tissue. Fecal pellets with dead seagrass tissue were > 3X more common than pellets with live seagrass tissue. Injury to seagrass leaves was more common along dead leaf sections than live sections (> 2—10X). Overall, spatial distributions, movement, and diet indicate that L. variegatus at densities observed in this study would tend to have minimal effects on living seagrass. Episodic periods of denuding grassbeds reported in the literature suggest L. variegatus switches to live seagrass tissue as dead tissue becomes scarce during times of high urchin density.

Aquaculture ◽  
2006 ◽  
Vol 254 (1-4) ◽  
pp. 483-495 ◽  
Author(s):  
Hugh Hammer ◽  
Stephen Watts ◽  
Addison Lawrence ◽  
John Lawrence ◽  
Renee Desmond

2021 ◽  
Vol 860 (1) ◽  
pp. 012014
Author(s):  
Nadiarti Nadiarti ◽  
Yayu A. La Nafie ◽  
Dody Priosambodo ◽  
Moh. Tauhid Umar ◽  
Sri Wahyuni Rahim ◽  
...  
Keyword(s):  

Development ◽  
1989 ◽  
Vol 106 (2) ◽  
pp. 355-365 ◽  
Author(s):  
G.M. Wessel ◽  
W. Zhang ◽  
C.R. Tomlinson ◽  
W.J. Lennarz ◽  
W.H. Klein

The influence of the extracellular matrix (ECM) on differential gene expression during sea urchin development was explored using cell-type-specific cDNA probes. The ECM of three species of sea urchin, Strongylocentrotus purpuratus, Lytechinus variegatus and Lytechinus pictus, was disrupted with the lathrytic agent beta-aminopropionitrile (BAPN), which inhibits collagen deposition in the ECM and arrests gastrulation (Wessel & McClay, Devl Biol. 121: 149, 1987). The levels of several mRNAs (Spec 1, Spec 2, CyIIa actin, CyIIIa actin and collagen in S. purpuratus, and metallothionine, ubiquitin and LpS3 in L. pictus and L. variegatus) were compared in BAPN-treated and control embryos. These mRNAs accumulated normally during BAPN treatment, even though the embryos did not gastrulate. To determine if the expression of any gene product is sensitive to ECM disruption, a differential cDNA screen compared poly (A+) RNA from BAPN-arrested and control embryos in Lytechinus. A cDNA clone was isolated from this screen that represented a 2.1 kb mRNA that did not accumulate during BAPN treatment. Removal of BAPN resulted in the accumulation of this transcript coincident with the onset of gastrulation. This cDNA clone encodes a L. variegatus homologue of LpS1, recently demonstrated to be an ancestral homologue of the aboral ectoderm-specific Spec 1-Spec 2 gene family in S. purpuratus. Nuclear run-on assays in L. pictus suggested that transcriptional activity of LpS1 was selectively inhibited by BAPN treatment. Thus, although the accumulation of many gene products occurred independently of the embryonic collagenous matrix, the accumulation of LpS1 and LvS1 appeared to be mediated by the ECM.


1983 ◽  
Vol 97 (4) ◽  
pp. 1249-1254 ◽  
Author(s):  
P Wadsworth ◽  
R D Sloboda

To follow the dynamics of microtubule (MT) assembly and disassembly during mitosis in living cells, tubulin has been covalently modified with the fluorochrome 5-(4,6-dichlorotriazin-2-yl)aminofluorescein and microinjected into fertilized eggs of the sea urchin Lytechinus variegatus. The changing distribution of the fluorescent protein probe is visualized in a fluorescence microscope coupled to an image intensification video system. Cells that have been injected with fluorescent tubulin show fluorescent linear polymers that assemble very rapidly and radiate from the spindle poles, coincident with the position of the astral fibers. No fluorescent polymer is apparent in other areas of the cytoplasm. When fluorescent tubulin is injected near the completion of anaphase, little incorporation of fluorescent tubulin into polymer is apparent, suggesting that new polymerization does not occur past a critical point in anaphase. These results demonstrate that MT polymerization is very rapid in vivo and that the assembly is both temporally and spatially regulated within the injected cells. Furthermore, the microinjected tubulin is stable within the sea urchin cytoplasm for at least 1 h since it can be reutilized in successive daughter cell spindles. Control experiments indicate that the observed fluorescence is dependent on MT assembly. The fluorescence is greatly diminished upon treatment of the cells with cold or colchicine agents known to cause the depolymerization of assembled MT. In addition, cells injected with fluorescent bovine serum albumin or assembly-incompetent fluorescent tubulin do not exhibit fluorescence localized in the spindle but rather appear diffusely fluorescent throughout the cytoplasm.


Sign in / Sign up

Export Citation Format

Share Document