scholarly journals Radiotheranostics of neuroendocrine neoplasms: quo vadis

2021 ◽  
Vol 49 ◽  
Author(s):  
P. O. Rumyantsev

Neuroendocrine neoplasms are grouped based on their neuroendocrine origin and represented by a  heterogeneous tumor cluster with various malignancy potentials and types of biological behavior. These tumors can localize anywhere, but most commonly within the gastrointestinal tract. The ability of tumor cells to express specific receptors and particulars of their metabolism make it possible to successfully use molecular visualization (single-photon emission computed tomography /positron emission tomography) and radiotargeted therapy for diagnosis and treatment of patients with neuroendocrine tumors. In clinical practice, somatostatin receptor (receptors type 2) radiotheranostics has been used most widely. Improvement of diagnostic and therapeutic characteristics of new radioligands, discovery of new receptor and metabolic targets, widening of the medical isotope spectrum and development of new theranostic pairs open wide horizons for radiotheranostics as an integral field in modern biomedicine. The paper summarizes the worldwide experience, highlights the state-of-the-art and future development of radiotheranostics of neuroendocrine tumors. 

2019 ◽  
Vol 18 ◽  
pp. 153303381984258 ◽  
Author(s):  
Efimia Boutsikou ◽  
Konstantinos Porpodis ◽  
Vasiliki Chatzipavlidou ◽  
Georgia Hardavella ◽  
George Gerasimou ◽  
...  

Background: Νeuroendocrine tumors of the lungs are rare arising in the thymus and gastro-entero-pancreatic tract and belonging to foregut of neuroendocrine tumors. The aim of the present prospective study was to estimate the potential impact of single-photon emission computed tomography somatostatin receptor scintigraphy using 99mTc-Tektrotyd on diagnosis, treatment response, and prognosis in patients with neuroendocrine tumors of the lungs. Methods: Thirty-six patients with neuroendocrine tumors of the lungs were evaluated by using 99mTc-HYNIC-TOC scintigraphy. The scintigraphic results were compared to liver tissue uptake (Krenning score). Likewise, the functional imaging results were compared with biochemical indices including chromogranin A, neuroendocrine-specific enolase, and insulin-like growth factor 1 at the time of diagnosis (baseline) and disease progression. Results: The number of somatostatin receptors, expressed with Krenning score, did not show any correlation with the survival of patients both at baseline ( P = .08) and at disease progression ( P = .24), and scintigraphy results did not relate significantly to progression-free survival. Comparing the results of 99mTc-HYNIC-TOC scintigraphy according to the response of patients in the initial treatment, a statistically significant negative correlation was observed both in the first and in the second scintigraphy with patients’ response ( P = .001 and P < .001, respectively). The concentrations of biochemical markers were in accordance with scintigraphy results in the diagnosis. Conclusion: This study indicates that 99mTc-HYNIC-TOC scintigraphy appears to be a reliable, noninvasive technique for detection of primary neuroendocrine tumors and their locoregional or distant metastases, although it cannot be used as a neuroendocrine tumors of the lungs predictive technique.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Natalie A. Bebbington ◽  
Bryan T. Haddock ◽  
Henrik Bertilsson ◽  
Eero Hippeläinen ◽  
Ellen M. Husby ◽  
...  

Abstract Background Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each included dataset for a given facility and scanner type, the computed tomography dose index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg according to clinical purpose of CT. Differences in maximum and minimum doses (derived for a 75-kg patient) between facilities were also calculated for each examination and clinical purpose. Results Data were processed from 83 scanners from 43 facilities. Data were sufficient to suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13 systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone (localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation, 13 systems). Great variations in dose were seen for all aforementioned examinations. Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6); infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8); SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and SPECT/CT parathyroid localisation/characterisation (7.8). Conclusions Suggested Nordic NDRL CT doses are presented according to clinical purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests great scope for optimisation in all 8 examinations.


1997 ◽  
Vol 8 (S3) ◽  
pp. 239-243 ◽  
Author(s):  
David L. Sultzer

Neuroimaging studies have contributed greatly to our understanding of Alzheimer's disease and other dementias. Computed tomography and magnetic resonance imaging reveal brain structure and aid in the diagnostic evaluation of patients with cognitive impairment. Functional neuroimaging studies use positron emission tomography, single-photon emission computed tomography, and other methods to measure regional cerebral activity, including metabolic rate, blood flow, and neuroreceptor density. Functional neuroimaging results can be useful clinically and have also been used in a variety of research applications to examine physiologic variables in neuropsychiatric illnesses.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 384
Author(s):  
Mohsin Khan A ◽  
Anuj Jain

Different types of human diseases are detected by medical image analysis which plays an important role. Studies that are developed for automated thyroid cancer classification is reviewed in this paper, especially to analyze the benign and malignant thyroid nodules features and comparisons. Hypothyroidism, hyperthyroidism, goitre and thyroid nodules (benign/malignant) are thyroid disorders. Ultrasound imaging, CT, MR imaging, nuclear medicine (NM) with positron emission tomography (PET), single photon emission computed tomography (SPECT) are the different medical techniques used to identify and classify thyroid gland abnormalities. In order to enhance the diagnosis of thyroid disease, various image processing techniques applied to thyroid ultra sound images are reviewed here. Studies based on non-clinical features for thyroid nodules classification is also discussed and reviewed.  


Sign in / Sign up

Export Citation Format

Share Document