Weakly compact, unconditionally converging, and Dunford-Pettis operators on spaces of vector-valued continuous functions

Author(s):  
Paulette Saab

Given a compact Hausdorff space X, E and F two Banach spaces, let T: C(X, E) → F denote a bounded linear operator (here C(X, E) stands for the Banach space of all continuous E-valued functions defined on X under supremum norm). It is well known [4] that any such operator T has a finitely additive representing measure G that is defined on the σ–field of Borel subsets of X and that G takes its values in the space of all bounded linear operators from E into the second dual of F. The representing measure G enjoys a host of many important properties; we refer the reader to [4] and [5] for more on these properties. The question of whether properties of the operator T can be characterized in terms of properties of the representing measure has been considered by many authors, see for instance [1], [2], [3] and [6]. Most characterizations presented (see [3] concerning weakly compact operators or [3] and [6] concerning unconditionally converging operators) were given under additional assumptions on the Banach space E. The aim of this paper is to show that one cannot drop the assumptions on E, indeed as we shall soon show many of the operator characterizations characterize the Banach space E itself. More specifically, it is known [3] that if E* and E** have the Radon-Nikodym property then a bounded linear operator T: C(X, E) → F is weakly compact if and only if the measure G is continuous at Ø (also called strongly bounded), i.e. limn ||G|| (Bn) = 0 for every decreasing sequence Bn ↘ Ø of Borel subsets of X (here ||G|| (B) denotes the semivariation of G at B), and if for every Borel set B the operator G(B) is a weakly compact operator from E to F. In this paper we shall show that if one wants to characterize weakly compact operators as those operators with the above mentioned properties then E* and E** must both have the Radon-Nikodym property. This will constitute the first part of this paper and answers in the negative a question of [2]. In the second part we consider unconditionally converging operators on C(X, E). It is known [6] that if T: C(X, E) → F is an unconditionally converging operator, then its representing measure G is continuous at 0 and, for every Borel set B, G(B) is an unconditionally converging operator from E to F. The converse of the above result was shown to be untrue by a nice example (see [2]). Here again we show that if one wants to characterize unconditionally converging operators as above, then the Banach space E cannot contain a copy of c0. Finally, in the last section we characterize Banach spaces E with the Schur property in terms of properties of Dunford-Pettis operators on C(X, E) spaces.

2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Danyal Soybaş

A Banach space is said to have (D) property if every bounded linear operator is weakly compact for every Banach space whose dual does not contain an isomorphic copy of . Studying this property in connection with other geometric properties, we show that every Banach space whose dual has (V∗) property of Pełczyński (and hence every Banach space with (V) property) has (D) property. We show that the space of real functions, which are integrable with respect to a measure with values in a Banach space , has (D) property. We give some other results concerning Banach spaces with (D) property.


1996 ◽  
Vol 38 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Denny H. Leung

A Banach space E is said to be regular if every bounded linear operator from E into E′ is weakly compact. This property was studied in [7, 9] under the name Property (w). In [7], using James type spaces as constructed in [4], examples were given of regular Banach spaces which fail to have weakly sequentially complete duals, answering a question raised in [9]. In this paper, we present some more results concerning the regularity of James type spaces.


1985 ◽  
Vol 37 (5) ◽  
pp. 908-920
Author(s):  
A. D. Andrew

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a “tree-like” Banach space is due to James 4], who used it to construct the separable space JT which has nonseparable dual and yet does not contain l1. This idea has proved useful. In [3], Hagler constructed a hereditarily c0 tree space, HT, and Schechtman [6] constructed, for each 1 ≦ p ≦ ∞, a reflexive Banach space, STp with a 1-unconditional basis which does not contain lp yet is uniformly isomorphic to for each n.In [1] we showed that if U is a bounded linear operator on JT, then there exists a subspace W ⊂ JT, isomorphic to JT such that either U or (1 — U) acts as an isomorphism on W and UW or (1 — U)W is complemented in JT. In this paper, we establish this result for the Hagler and Schechtman tree spaces.


1991 ◽  
Vol 14 (3) ◽  
pp. 611-614 ◽  
Author(s):  
James R. Holub

It is shown that ifXis a uniformly convex Banach space andSa bounded linear operator onXfor which‖I−S‖=1, thenSis invertible if and only if‖I−12S‖<1. From this it follows that ifSis invertible onXthen either (i)dist(I,[S])<1, or (ii)0is the unique best approximation toIfrom[S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.


CAUCHY ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. 167
Author(s):  
Minanur Rohman

<p class="AbstractCxSpFirst">In this paper, we will discuss some applications of almost surjective epsilon-isometry mapping, one of them is in Lorentz space ( L_(p,q)-space). Furthermore, using some classical theorems of w star-topology and concept of closed subspace -complemented, for every almost surjective epsilon-isometry mapping  <em>f </em>: <em>X to</em><em> Y</em>, where <em>Y</em> is a reflexive Banach space, then there exists a bounded linear operator   <em>T</em> : <em>Y to</em><em> X</em>  with  such that</p><p class="AbstractCxSpMiddle">  </p><p class="AbstractCxSpLast">for every x in X.</p>


2014 ◽  
Vol 30 (1) ◽  
pp. 31-37
Author(s):  
H. A. ATIA ◽  
◽  

Our goal in this work is to study the separation problem for the Grushin differential operator formed by ... in the Banach space H1(R2), where the potential Q(x, y) ∈ L(1), is a bounded linear operator which transforms at 1 in value of (x, y).


1979 ◽  
Vol 20 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Che-Kao Fong

A (bounded, linear) operator H on a Banach space is said to be hermitian if ∥exp(itH)∥ = 1 for all real t. An operator N on is said to be normal if N = H + iK, where H and K are commuting hermitian operators. These definitions generalize those familiar concepts of operators on Hilbert spaces. Also, the normal derivations defined in [1] are normal operators. For more details about hermitian operators and normal operators on general Banach spaces, see [4]. The main result concerning normal operators in the present paper is the following theorem.


1970 ◽  
Vol 22 (5) ◽  
pp. 994-996 ◽  
Author(s):  
J. G. Stampfli

This note is an addendum to my earlier paper [8]. The class of adjoint abelian operators discussed there was small because the compatibility relation between the operator and the duality map was too restrictive. (In effect, the relation is appropriate for Hilbert space, but ill-suited for other Banach spaces where the unit ball is not round.) However, the techniques introduced in [8] permit us to readily obtain a spectral theory (of the Dunford type) for a wider class of operators on Banach spaces, as we shall show.A duality system for the operator T is an ordered sextuple(i) T is a bounded linear operator mapping the Banach space B into B,(ii) ϕ is a duality map from B to B*. Thus, for x ∊ B, ϕ(x) = x* ∊ B*, where ‖x‖ = ‖x*‖ and x*(x) = ‖x‖2. The existence of ϕ follows easily from the Hahn-Banach Theorem.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Yin Chen

For a bounded linear operator on a Banach space, the uniform resolvent condition implies the absolute summability of the powers of the operator. In this paper, we study the bounds for the absolute sum of the powers of an operator that satisfies the uniform resolvent condition. Some known bounds on general Banach spaces as well as on finite-dimensional Banach spaces are improved.


1977 ◽  
Vol 18 (1) ◽  
pp. 13-15 ◽  
Author(s):  
P. G. Spain

Each bounded linear operator a on a Hilbert space K has a hermitian left-support projection p such that and (1 – p)K = ker α* = ker αα*. I demonstrate here that certain operators on Banach spaces also have left supports.Throughout this paper X will be a complex Banach space with norm-dual X', and L(X) will be the Banach algebra of bounded linear operators on X. Two linear subspaces Y and Z of X are orthogonal (in the sense of G. Birkhoff) if ∥ y ∥ ≦ ∥ y + z ∥ (y ∈Y, z ∈ Z); this orthogonality relation is not, in general, symmetric. It is easy to see that pX is orthogonal to (1 – p)X if and only if the norm of p is 0 or 1, when p is a projection on X.


Sign in / Sign up

Export Citation Format

Share Document