scholarly journals Investigation of the Mechanical Properties of AISI 316 Austenitic Stainless Steel and St 37 Low Carbon Steel Dissimilar Joint by Friction Stir Welding

2015 ◽  
Vol 34 (2) ◽  
pp. 89-101
Author(s):  
A.H. Khosrovaninezhad ◽  
M. Shamanian ◽  
A. Rezaeian ◽  
M. Atapour ◽  
◽  
...  
2018 ◽  
Vol 4 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Mohamed Mohamed Abd Elnabi ◽  
Tarek Abd Elsadek Osman ◽  
Alaa Eldeen El Mokadem ◽  
Abou Bakr Elshalakany 

The purpose of this research is to use friction stir welding (FSW) to join dissimilar  metals, annealed low carbon steel and A1050 pure aluminum. A butt joint with a similar sheet thickness of 1.9 mm was applied. The novelties of the research are relatively using high generated heat produced by a combination of low traverse speed and high rotational speed to perform the dissimilar joints and using a tool material (K107cold work tool steel) which has not been used in FSW with tool cooling. The present work studied the effect of FSW variables such as tilt angle, tool cooling, base metal location on mechanical properties. Tensile tests were used to evaluate the mechanical properties of the dissimilar joints. The microstructure specimens were examined using a scanning electron microscope (SEM). Sound dissimilar joints were successfully produced. The maximum joint efficiency obtained in this study is 51.7% of the aluminum tensile strength. The microstructure images showed that many steel fragments were sheared off from the steel surface by the tool action and scattered in the weld nugget, a continuous intermetallic compound (IMC) layer formed at the interface, the thickness of the IMC layer at the interface decreased in the thickness direction of the weld. FeAl3 IMC phase was only observed at the interface.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Younis K. Khdir ◽  
Salim A. Kako ◽  
Ramadhan H. Gardi

The aim of this study is to investigate the influence of different heat inputs on mechanical properties and microstructure of dissimilar electrical arc welded austenitic stainless steel AISI 304 and low-carbon steel (CS) joints. The mechanical properties of welded austenitic stainless steel type AISI 304 and low-CS are studied. Five different heat inputs 0.5, 0.9, 1.41, 2, and 2.5 KJ/min were applied to investigate the microstructure of the welded zone and mechanical properties. The results showed that the efficiency of the joints and tensile strength increased with increasing heat inputs, while excess heat input reduces the efficiency. Furthermore, changes in microstructure with excess heat input cause failure at the heat-affected zone.


2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


2020 ◽  
Vol 1546 ◽  
pp. 012057
Author(s):  
I K Chenykh ◽  
E V Vasil’ev ◽  
A N Abakumov ◽  
N V Zakharova ◽  
K A Sinogina

Sign in / Sign up

Export Citation Format

Share Document