scholarly journals Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests

2012 ◽  
Vol 10 (8) ◽  
pp. 409-415 ◽  
Author(s):  
Christopher C Wilmers ◽  
James A Estes ◽  
Matthew Edwards ◽  
Kristin L Laidre ◽  
Brenda Konar
Science ◽  
2020 ◽  
Vol 368 (6496) ◽  
pp. 1243-1247 ◽  
Author(s):  
Edward J. Gregr ◽  
Villy Christensen ◽  
Linda Nichol ◽  
Rebecca G. Martone ◽  
Russell W. Markel ◽  
...  

Predator recovery often leads to ecosystem change that can trigger conflicts with more recently established human activities. In the eastern North Pacific, recovering sea otters are transforming coastal systems by reducing populations of benthic invertebrates and releasing kelp forests from grazing pressure. These changes threaten established shellfish fisheries and modify a variety of other ecosystem services. The diverse social and economic consequences of this trophic cascade are unknown, particularly across large regions. We developed and applied a trophic model to predict these impacts on four ecosystem services. Results suggest that sea otter presence yields 37% more total ecosystem biomass annually, increasing the value of finfish [+9.4 million Canadian dollars (CA$)], carbon sequestration (+2.2 million CA$), and ecotourism (+42.0 million CA$). To the extent that these benefits are realized, they will exceed the annual loss to invertebrate fisheries (−$7.3 million CA$). Recovery of keystone predators thus not only restores ecosystems but can also affect a range of social, economic, and ecological benefits for associated communities.


Ecology ◽  
2008 ◽  
Vol 89 (10) ◽  
pp. 2725-2735 ◽  
Author(s):  
Robert G. Anthony ◽  
James A. Estes ◽  
Mark A. Ricca ◽  
A. Keith Miles ◽  
Eric D. Forsman

2000 ◽  
Vol 27 (2) ◽  
pp. 179-200 ◽  
Author(s):  
J.K. PINNEGAR ◽  
N.V.C. POLUNIN ◽  
P. FRANCOUR ◽  
F. BADALAMENTI ◽  
R. CHEMELLO ◽  
...  

An important principle of environmental science is that changes in single components of systems are likely to have consequences elsewhere in the same systems. In the sea, food web data are one of the few foundations for predicting such indirect effects, whether of fishery exploitation or following recovery in marine protected areas (MPAs). We review the available literature on one type of indirect interaction in benthic marine ecosystems, namely trophic cascades, which involve three or more trophic levels connected by predation. Because many indirect effects have been revealed through fishery exploitation, in some cases we include humans as trophic levels. Our purpose is to establish how widespread cascades might be, and infer how likely they are to affect the properties of communities following the implementation of MPAs or intensive resource exploitation. We review 39 documented cascades (eight of which include humans as a trophic level) from 21 locations around the world; all but two of the cascades are from shallow systems underlain by hard substrata (kelp forests, rocky subtidal, coral reefs and rocky intertidal). We argue that these systems are well represented because they are accessible and also amenable to the type of work that is necessary. Nineteen examples come from the central-eastern and north-eastern Pacific, while no well-substantiated benthic cascades have been reported from the NE, CE or SW Atlantic, the Southern Oceans, E Indian Ocean or NW Pacific. The absence of examples from those zones is probably due to lack of study. Sea urchins are very prominent in the subtidal examples, and gastropods, especially limpets, in the intertidal examples; we suggest that this may reflect their predation by fewer specialist predators than is the case with fishes, but also their conspicuousness to investigators. The variation in ecological resolution amongst studies, and in intensity of study amongst systems and regions, indicates that more cascades will likely be identified in due course. Broadening the concept of cascades to include pathogenic interactions would immediately increase the number of examples. The existing evidence is that cascade effects are to be expected when hard-substratum systems are subject to artisanal resource exploitation, but that the particular problems of macroalgal overgrowth on Caribbean reefs and the expansion of coralline barrens in the Mediterranean rocky-sublittoral will not be readily reversed in MPAs, probably because factors other than predation-based cascades have contributed to them in the first place. More cascade effects are likely to be found in the soft-substratum systems that are crucial to so many large-scale fisheries, when opportunities such as those of MPAs and fishing gradients become available for study of such systems, and the search is widened to less conspicuous focal organisms such as polychaetes and crustaceans.


Science ◽  
2020 ◽  
Vol 369 (6509) ◽  
pp. 1351-1354 ◽  
Author(s):  
Douglas B. Rasher ◽  
Robert S. Steneck ◽  
Jochen Halfar ◽  
Kristy J. Kroeker ◽  
Justin B. Ries ◽  
...  

Predator loss and climate change are hallmarks of the Anthropocene yet their interactive effects are largely unknown. Here, we show that massive calcareous reefs, built slowly by the alga Clathromorphum nereostratum over centuries to millennia, are now declining because of the emerging interplay between these two processes. Such reefs, the structural base of Aleutian kelp forests, are rapidly eroding because of overgrazing by herbivores. Historical reconstructions and experiments reveal that overgrazing was initiated by the loss of sea otters, Enhydra lutris (which gave rise to herbivores capable of causing bioerosion), and then accelerated with ocean warming and acidification (which increased per capita lethal grazing by 34 to 60% compared with preindustrial times). Thus, keystone predators can mediate the ways in which climate effects emerge in nature and the pace with which they alter ecosystems.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jane C. Watson ◽  
Michael W. Hawkes ◽  
Lynn C. Lee ◽  
Andy Lamb

Abstract Eisenia arborea has a disjunct distribution along the west coast of North America. We detail the current distribution of E. arborea and use long-term records to examine how present-day shifts in E. arborea prevalence and abundance in British Columbia (BC), relative to the dominant stipitate kelp Pterygophora californica, may be driven by interactions between changing grazing pressure and warming water. We further speculate on how the disjunction of E. arborea arose. The ancestor of E. arborea likely dispersed from Japan to North America where glaciation disrupted its distribution and speciation occurred. As glaciers retreated E. arborea likely dispersed into BC from warmer waters in the south and/or expanded from refugia off Vancouver Island and Haida Gwaii. While E. arborea is uncommon, our records extend its range into Alaska and Washington State. Along western Vancouver Island, BC, under warming conditions, E. arborea prevalence and abundance increased where once-extirpated sea otters (Enhydra lutris) removed urchins. Where otters were absent, however, reduced summer wave heights, associated with warming, apparently allowed urchins to graze shallow-water kelps, which declined. We suggest that under warming conditions, sea otters may increase kelp resilience, with E. arborea becoming more prevalent in NE Pacific kelp forests.


Sign in / Sign up

Export Citation Format

Share Document