trophic cascades
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 68)

H-INDEX

64
(FIVE YEARS 3)

Author(s):  
Silva Uusi-Heikkilä ◽  
Tommi Perälä ◽  
Anna Kuparinen

Trophic cascade studies often rely on linear food chains instead of complex food webs and are typically measured as biomass averages, not as biomass variation. We study trophic cascades propagating across a complex food web including a measure of biomass variation in addition to biomass average. We examined whether different fishing strategies induce trophic cascades and whether the cascades differ from each other. We utilized an allometric trophic network (ATN) model to mechanistically study fishing-induced changes in food-web dynamics. Different fishing strategies did not trigger traditional, reciprocal trophic cascades, as measured in biomass averages. Instead, fishing triggered a variation cascade that propagated across the food web including fish, zooplankton and phytoplankton species. In fisheries that removed a large amount of top-predatory and cannibalistic fish, the biomass oscillations started to decrease after fishing was started. In fisheries that mainly targeted large planktivorous fish, the biomass oscillations did not dampen, but slightly increased over time. Removing species with specific ecological functions might alter the food web dynamics and potentially affect the ecological resilience of aquatic ecosystems.


2021 ◽  
Author(s):  
Jason Cosens Walsman ◽  
Alexander T Strauss ◽  
Jessica Hite ◽  
Marta S Shocket ◽  
Spencer R Hall

Most evolutionary theory predicts that, during epidemics, hosts will evolve higher resistance to parasites that kill them. Here, we provide an alternative to that typical expectation, with an explanation centered on resource feedbacks. When resistance is costly, hosts evolve decreasing resistance without parasites, as expected. But with parasites, hosts can evolve lower resistance than they would in the absence of parasites. This outcome arises in an eco-evolutionary model when four conditions are met: first, resistance has a fecundity cost (here, via decreased foraging/exposure rate); second, resources increase during epidemics via trophic cascades; third, increased resources magnify the benefit of maintaining a fast foraging rate, thereby magnifying the cost of evolving a slower foraging/exposure rate (i.e., resistance); fourth, that amplification of the cost outweighs the benefit of resistance. When these conditions are met, hosts evolve lower resistance than without parasites. This phenomenon was previously observed in a mesocosm experiment with fungal parasites, zooplankton hosts, and algal resources. Re-analyzing this experiment produced evidence for our model's mechanism. Thus, both model and experiment indicate that, via resource feedbacks, parasites can counterintuitively select against resistance.


2021 ◽  
Author(s):  
Stephen R. Carpenter ◽  
Babak M.S. Arani ◽  
Egbert H. Van Nes ◽  
Marten Scheffer ◽  
Michael L. Pace

Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 299
Author(s):  
Tz-Chian Chen ◽  
Pei-Chi Ho ◽  
Gwo-Ching Gong ◽  
An-Yi Tsai ◽  
Chih-hao Hsieh

Copepods have been known to be able to cause an increase in phytoplankton through trophic cascades, as copepods consume heterotrophic protists that feed on phytoplankton. However, how the intensity of copepod-induced trophic cascades varies with environmental conditions remains elusive. We hypothesized that a higher proportion of large phytoplankton in the phytoplankton size distribution, a higher stoichiometric quality of phytoplankton, and a higher temperature could mitigate the intensity of a trophic cascade through increasing direct grazing on phytoplankton by copepods. To explore this issue, we quantified the intensity of a trophic cascade as the difference in phytoplankton concentration reduction by grazing using in situ incubations with and without copepods in the East China Sea. We then investigated the relationship between the intensity of trophic cascades versus the slope of the normalized biomass size spectrum (NBSS) of the phytoplankton community, the C:N ratio of particulate organic matter (POM), and temperature. We found that the intensity of trophic cascades weakly decreased with the NBSS slope and increased with temperature; however, both relationships were not statistically significant. We did not find a clear relationship between the strength of the trophic cascades and the C:N ratio of POM. Our results do not support the hypothesis that the proportion of large phytoplankton, the stoichiometric quality of phytoplankton, and the temperature affect trophic cascades. Instead, we suggest that other critical factors, such as protist abundance, play a role in affecting trophic cascades in the plankton food web in the East China Sea. We further propose some issues which should be addressed when conducting in situ shipboard incubation.


2021 ◽  
Author(s):  
Chase J. Rakowski ◽  
Mathew A. Leibold

AbstractTrophic cascades, or indirect effects of predators on non-adjacent lower trophic levels, are thought to pervade diverse ecosystems, though they tend to be stronger in aquatic ecosystems. Most research on freshwater trophic cascades focused on temperate lakes where Daphnia tend to dominate the zooplankton community, and these studies identified that Daphnia plays a key role in facilitating trophic cascades by linking fish to algae with strong food web interactions. However, Daphnia are rare or absent in most tropical and subtropical lowland freshwaters, and many invertebrate predators have received little attention in food web research despite being common and widespread. Therefore, we aimed to test whether trophic cascades are possible in small warmwater ponds where small invertebrates are the top predators and Daphnia are absent. We collected naturally occurring plankton communities from small fishless water bodies in central Texas and propagated them in replicate pond mesocosms. We removed zooplankton from some mesocosms, left the plankton community intact in others, and added one of two densities of the predaceous insect Neoplea striola to others. Following an incubation period we then compared biomasses of plankton groups to assess food web effects between the trophic levels including whether Neoplea caused a trophic cascade by reducing zooplankton. The zooplankton community became dominated by copepods which prefer large phytoplankton and exhibit a fast escape response. Perhaps due to these qualities of the copepods and perhaps due to slow consumption rates by Neoplea on key grazers, no food web effects were found other than zooplankton marginally reducing large phytoplankton. More research is needed to understand the behavior and ecology of Neoplea, but trophic cascades may generally be weak or absent in subtropical and tropical lowland freshwaters where Daphnia is rare.


Sign in / Sign up

Export Citation Format

Share Document