scholarly journals OCCURRENCE OF PHARMACEUTICALS AND PERSONAL CARE PRODUCTS IN FISH: RESULTS OF A NATIONAL PILOT STUDY IN THE UNITED STATES

2009 ◽  
Vol 28 (12) ◽  
pp. 2587 ◽  
Author(s):  
Alejandro J. Ramirez ◽  
Richard A. Brain ◽  
Sascha Usenko ◽  
Mohammad A. Mottaleb ◽  
John G. O'Donnell ◽  
...  
Author(s):  
Norah MacKendrick

This chapter outlines the United States’ uneven and contradictory relationship with the precautionary principle as a policy ethic, and, more specifically points to how the safe-until-sorry model at the regulatory level helps to explain why precaution has flourished as an individualized, consumer principle. In outlining this relationship, it documents the serious gaps in regulatory oversight in what is a vast, fractured policy framework that oversees chemicals used in agriculture and food production, and in the manufacturing of cosmetics, personal care products and consumer goods.


2021 ◽  
Vol 21 (6) ◽  
pp. 5079-5100
Author(s):  
Karl M. Seltzer ◽  
Elyse Pennington ◽  
Venkatesh Rao ◽  
Benjamin N. Murphy ◽  
Madeleine Strum ◽  
...  

Abstract. Volatile chemical products (VCPs) are an increasingly important source of anthropogenic reactive organic carbon (ROC) emissions. Among these sources are everyday items, such as personal care products, general cleaners, architectural coatings, pesticides, adhesives, and printing inks. Here, we develop VCPy, a new framework to model organic emissions from VCPs throughout the United States, including spatial allocation to regional and local scales. Evaporation of a species from a VCP mixture in the VCPy framework is a function of the compound-specific physiochemical properties that govern volatilization and the timescale relevant for product evaporation. We introduce two terms to describe these processes: evaporation timescale and use timescale. Using this framework, predicted national per capita organic emissions from VCPs are 9.5 kg per person per year (6.4 kg C per person per year) for 2016, which translates to 3.05 Tg (2.06 Tg C), making VCPs a dominant source of anthropogenic organic emissions in the United States. Uncertainty associated with this framework and sensitivity to select parameters were characterized through Monte Carlo analysis, resulting in a 95 % confidence interval of national VCP emissions for 2016 of 2.61–3.53 Tg (1.76–2.38 Tg C). This nationwide total is broadly consistent with the U.S. EPA's 2017 National Emission Inventory (NEI); however, county-level and categorical estimates can differ substantially from NEI values. VCPy predicts higher VCP emissions than the NEI for approximately half of all counties, with 5 % of all counties having greater than 55 % higher emissions. Categorically, application of the VCPy framework yields higher emissions for personal care products (150 %) and paints and coatings (25 %) when compared to the NEI, whereas pesticides (−54 %) and printing inks (−13 %) feature lower emissions. An observational evaluation indicates emissions of key species from VCPs are reproduced with high fidelity using the VCPy framework (normalized mean bias of −13 % with r = 0.95). Sector-wide, the effective secondary organic aerosol yield and maximum incremental reactivity of VCPs are 5.3 % by mass and 1.58 g O3 g−1, respectively, indicating VCPs are an important, and likely to date underrepresented, source of secondary pollution in urban environments.


2020 ◽  
Author(s):  
Karl M. Seltzer ◽  
Elyse Pennington ◽  
Venkatesh Rao ◽  
Benjamin N. Murphy ◽  
Madeleine Strum ◽  
...  

Abstract. Volatile chemical products (VCPs) are an increasingly important source of anthropogenic reactive organic carbon (ROC) emissions. Among these sources are everyday items, such as personal care products, general cleaners, architectural coatings, pesticides, adhesives, and printing inks. Here, we develop VCPy, a new framework to model organic emissions from VCPs throughout the United States, including spatial allocation to regional and local scales. Evaporation of species in the VCPy framework is a function of the compound specific physiochemical properties that govern volatilization and the timescale relevant for product evaporation. We introduce the terms evaporation timescale and use timescale, respectively, to describe these processes. Using this framework, predicted national, per-capita organic emissions from VCPs are 9.7 kg person−1 year−1 (6.5 kgC person−1 year−1) for 2016, which translates to 3.12 Tg (2.10 TgC), making VCPs a dominant source of anthropogenic organic emissions in the United States. Uncertainty associated with this framework and sensitivity to select parameters were characterized through Monte Carlo analysis, resulting in a 95 % confidence interval of national VCP emissions for 2016 of 2.68–3.60 Tg (1.81–2.42 TgC). This nationwide total is broadly consistent with the US EPA's 2017 National Emission Inventory (NEI); however, county-level and categorical estimates can differ substantially from NEI values. VCPy predicts larger VCP emissions than the NEI for approximately half of all counties, with 5 % of all counties featuring increases > 60%. Categorically, personal care products (150 %) and paints/coatings (34 %) feature the largest increases, whereas pesticides (−54 %) and printing inks (−13 %) feature the largest decreases. An observational evaluation indicates emissions of key species from VCPs are reproduced with high fidelity in the methods employed here (normalized mean bias of −13 % with r = 0.95). Sector-wide, the effective secondary organic aerosol yield and maximum incremental reactivity of VCPs are 5.3 % by mass and 1.59 g O3 g−1, respectively, indicating VCPs are an important, and likely underrepresented to-date, source of secondary pollution in urban environments.


2020 ◽  
Author(s):  
Aeriel D Belk ◽  
Toni Duarte ◽  
Casey Quinn ◽  
David A. Coil ◽  
Keith E. Belk ◽  
...  

Abstract Background. The United States’ large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process. After harvest, the internal temperature of the chicken is rapidly cooled to inhibit bacterial growth that would otherwise compromise the safety of the product. This step is accomplished most commonly by water immersion chilling in the United States, while air chilling methods dominate other global markets. A comprehensive understanding of the differences between these chilling methods is lacking. Therefore, we assessed the meat quality, shelf-life, microbial ecology, and technoeconomic impacts of chilling methods on chicken broilers in a university meat laboratory setting. Results. We discovered that air-chilling (AC) methods resulted in superior chicken odor and shelf-life, especially prior to 14 days of dark storage. Moreover, we demonstrated that AC resulted in a more diverse microbiome that we hypothesize may delay the dominance of the spoilage organism Pseudomonas. Finally, a technoeconomic analysis highlighted potential economic advantages to AC when compared to water-chilling (WC) in facility locations where water costs are a more significant factor than energy costs. Conclusions. In this pilot study, AC chilling methods resulted in a superior product compared to WC methods and may have economic advantages in regions of the U.S. where water is expensive. As a next step, a similar experiment should be done in an industrial setting to confirm these results generated in a small-scale university lab facility.


Sign in / Sign up

Export Citation Format

Share Document