scholarly journals Influence of Micro-Grid in Steady State Performance of Primary Distribution System

2013 ◽  
Vol 6 (5) ◽  
pp. 819-824 ◽  
Author(s):  
K. Buayai ◽  
T. Kerdchuen
10.2514/3.895 ◽  
1997 ◽  
Vol 11 ◽  
pp. 306-309 ◽  
Author(s):  
Edwin H. Olmstead ◽  
Edward S. Taylor ◽  
Meng Wang ◽  
Parviz Moin ◽  
Scott K. Thomas ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Gang Liu ◽  
Dong Qiu ◽  
Xiuru Wang ◽  
Ke Zhang ◽  
Huafeng Huang ◽  
...  

Background: The PWM Boost converter is a strongly nonlinear discrete system, especially when the input voltage or load varies widely, therefore, tuning the control parameters of which is a challenge work. Objective: In order to overcome the issues, particle swarm optimization (PSO) is employed for tuning the parameters of a sliding mode controller of a boost converter. Methods: Based on the analysis of the Boost converter model and its non-linear characteristics, a mathematic model of a boost converter with a sliding mode controller is built firstly. Then, the parameters of the Boost controller are adjusted based on the integrated time and absolute error (ITAE), integral square error (ISE) and integrated absolute error (IAE) indexes by PSO. Results: Simulation verification was performed, and the results show that the controllers tuned by the three indexes all have excellent robust stability. Conclusion: The controllers tuned by ITAE and ISE indexes have excellent steady-state performance, but the overshoot is large during the startup. The controller tuned by IAE index has better startup performance and slightly worse steady-state performance.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1163
Author(s):  
Mengning Qiu ◽  
Avi Ostfeld

Steady-state demand-driven water distribution system (WDS) solution is the bedrock for much research conducted in the field related to WDSs. WDSs are modeled using the Darcy–Weisbach equation with the Swamee–Jain equation. However, the Swamee–Jain equation approximates the Colebrook–White equation, errors of which are within 1% for ϵ/D∈[10−6,10−2] and Re∈[5000,108]. A formulation is presented for the solution of WDSs using the Colebrook–White equation. The correctness and efficacy of the head formulation have been demonstrated by applying it to six WDSs with the number of pipes ranges from 454 to 157,044 and the number of nodes ranges from 443 to 150,630. The addition of a physically and fundamentally more accurate WDS solution method can improve the quality of the results achieved in both academic research and industrial application, such as contamination source identification, water hammer analysis, WDS network calibration, sensor placement, and least-cost design and operation of WDSs.


Author(s):  
Siow Chun Lim ◽  
Mohd Zainal Abidin Abd Kadir ◽  
Chandima Gomes ◽  
Norhafiz Azis

2015 ◽  
Author(s):  
Terrence Dickerson ◽  
Andrew McDaniel ◽  
Sherry Williams ◽  
Dianne Luning-Prak ◽  
Len Hamilton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document