Dissolution mechanisms of elemental sulfur during biooxidation of a refractory high-sulfur gold concentrate

2018 ◽  
Vol 35 (4) ◽  
pp. 192-201
Author(s):  
Y. Song ◽  
H.Y. Yang ◽  
L.L. Tong ◽  
S.T. Huang
Keyword(s):  
Author(s):  
V.K. Berry

There are two strains of bacteria viz. Thiobacillus thiooxidansand Thiobacillus ferrooxidanswidely mentioned to play an important role in the leaching process of low-grade ores. Another strain used in this study is a thermophile and is designated Caldariella .These microorganisms are acidophilic chemosynthetic aerobic autotrophs and are capable of oxidizing many metal sulfides and elemental sulfur to sulfates and Fe2+ to Fe3+. The necessity of physical contact or attachment by bacteria to mineral surfaces during oxidation reaction has not been fairly established so far. Temple and Koehler reported that during oxidation of marcasite T. thiooxidanswere found concentrated on mineral surface. Schaeffer, et al. demonstrated that physical contact or attachment is essential for oxidation of sulfur.


Circular ◽  
1970 ◽  
Author(s):  
Jim S. Hinds ◽  
Richard R. Cunningham
Keyword(s):  

1984 ◽  
Vol 19 (1) ◽  
pp. 111-118 ◽  
Author(s):  
B.G. Brownlee ◽  
D.S. Painter ◽  
R.J. Boone

Abstract During August, 1983 geosmin was identified in a municipal water supply drawn from western Lake Ontario. The geosmin concentrations were 0.01-0.07 μg L-1, within the range for threshold odour concentration of 0.01-0.2 μg L-1. 2-Methylisoborneol was not detected. The odour 'event' coincided with a dieoff of Cladophora in the lake, but we were not able to establish a direct link between the dieoff and geosmin production. Decomposing Cladophora in shoreline areas produced a strong odour in the air. 3-Methylindole, elemental sulfur, dimethyl tetrasulfide, and dimethyl pentasulfide were tentatively identified in water samples collected from these areas, but geosmin and 2-methylisoborneol were not detected.


2021 ◽  
Vol 223 ◽  
pp. 112606
Author(s):  
Dengxiao Zhang ◽  
Guanghui Du ◽  
Wenjing Zhang ◽  
Ya Gao ◽  
Hongbin Jie ◽  
...  

2021 ◽  
Vol 2 (7) ◽  
pp. 2391-2397
Author(s):  
Moira K. Lauer ◽  
Andrew G. Tennyson ◽  
Rhett C. Smith

Herein we report a route to sulfur–starch composites by the modification of corn starch with octenyl succinic anhydride (OSA) and its subsequent reaction with elemental sulfur to generate OSSx (where x = wt% sulfur, either 90 or 95).


Sign in / Sign up

Export Citation Format

Share Document