TROVANTS OF THE LENA RIVER: HYPOTHESIS AND FORMATION MODEL

Unusual nodule formations have long been known in the steep banks of the Lena River and its tributaries. Their belonging to the category of Trovants (trovantogenesis) has been established. It is shown that trovants formation (trovantogenesis) is a process of specific transformation of cemented sands to varying degrees in platform and sub-platform environments. The hypothesis expressed by Romanian geologists about the pseudo-concretionary nature of the trovants has been confirmed. The aqua-dissipative model of their genesis is proposed. The variant of genetic сlassification of small geological bodies wherein trovants are classified as a consistent type is discussed.

2015 ◽  
pp. 87
Author(s):  
V. V. Spektor ◽  
N. T. Bakulina ◽  
V. D. Spektor
Keyword(s):  

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3511
Author(s):  
Elena Gershelis ◽  
Andrey Grinko ◽  
Irina Oberemok ◽  
Elizaveta Klevantseva ◽  
Natalina Poltavskaya ◽  
...  

Global warming in high latitudes causes destabilization of vulnerable permafrost deposits followed by massive thaw-release of organic carbon. Permafrost-derived carbon may be buried in the nearshore sediments, transported towards the deeper basins or degraded into the greenhouse gases, potentially initiating a positive feedback to climate change. In the present study, we aim to identify the sources, distribution and degradation state of organic matter (OM) stored in the surface sediments of the Laptev Sea (LS), which receives a large input of terrestrial carbon from both Lena River discharge and intense coastal erosion. We applied a suite of geochemical indicators including the Rock Eval parameters, traditionally used for the matured OM characterization, and terrestrial lipid biomarkers. In addition, we analyzed a comprehensive grain size data in order to assess hydrodynamic sedimentation regime across the LS shelf. Rock-Eval (RE) data characterize LS sedimentary OM with generally low hydrogen index (100–200 mg HC/g TOC) and oxygen index (200 and 300 CO2/g TOC) both increasing off to the continental slope. According to Tpeak values, there is a clear regional distinction between two groups (369–401 °C for the inner and mid shelf; 451–464 °C for the outer shelf). We suggest that permafrost-derived OM is traced across the shallow and mid depths with high Tpeak and slightly elevated HI values if compared to other Arctic continental margins. Molecular-based degradation indicators show a trend to more degraded terrestrial OC with increasing distance from the coast corroborating with RE results. However, we observed much less variation of the degradation markers down to the deeper sampling horizons, which supports the notion that the most active OM degradation in LS land-shelf system takes part during the cross-shelf transport, not while getting buried deeper.


2020 ◽  
Vol 496 (1) ◽  
pp. 638-648 ◽  
Author(s):  
Timo L R Halbesma ◽  
Robert J J Grand ◽  
Facundo A Gómez ◽  
Federico Marinacci ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT We investigate whether the galaxy and star formation model used for the Auriga simulations can produce a realistic globular cluster (GC) population. We compare statistics of GC candidate star particles in the Auriga haloes with catalogues of the Milky Way (MW) and Andromeda (M31) GC populations. We find that the Auriga simulations do produce sufficient stellar mass for GC candidates at radii and metallicities that are typical for the MW GC system (GCS). We also find varying mass ratios of the simulated GC candidates relative to the observed mass in the MW and M31 GCSs for different bins of galactocentric radius metallicity (rgal–[Fe/H]). Overall, the Auriga simulations produce GC candidates with higher metallicities than the MW and M31 GCS and they are found at larger radii than observed. The Auriga simulations would require bound cluster formation efficiencies higher than 10 per cent for the metal-poor GC candidates, and those within the Solar radius should experience negligible destruction rates to be consistent with observations. GC candidates in the outer halo, on the other hand, should either have low formation efficiencies, or experience high mass-loss for the Auriga simulations to produce a GCS that is consistent with that of the MW or M31. Finally, the scatter in the metallicity as well as in the radial distribution between different Auriga runs is considerably smaller than the differences between that of the MW and M31 GCSs. The Auriga model is unlikely to give rise to a GCS that can be consistent with both galaxies.


2021 ◽  
Vol 5 ◽  
pp. 100033
Author(s):  
Benedetto Bozzini ◽  
Maria Chiara D’Autilia ◽  
Claudio Mele ◽  
Ivonne Sgura

2021 ◽  
Vol 9 (2) ◽  
pp. 225
Author(s):  
Farong Gao ◽  
Kai Wang ◽  
Zhangyi Yang ◽  
Yejian Wang ◽  
Qizhong Zhang

In this study, an underwater image enhancement method based on local contrast correction (LCC) and multi-scale fusion is proposed to resolve low contrast and color distortion of underwater images. First, the original image is compensated using the red channel, and the compensated image is processed with a white balance. Second, LCC and image sharpening are carried out to generate two different image versions. Finally, the local contrast corrected images are fused with sharpened images by the multi-scale fusion method. The results show that the proposed method can be applied to water degradation images in different environments without resorting to an image formation model. It can effectively solve color distortion, low contrast, and unobvious details of underwater images.


Sign in / Sign up

Export Citation Format

Share Document