scholarly journals Development of Personalized Learning Resources Recommendation System Based on Knowledge Graph

2021 ◽  
Vol 10 (2) ◽  
pp. 68-72
Author(s):  
XU Xiaoli ◽  
HUANG Hui ◽  
WU Mengmeng ◽  
LIAO Yu ◽  
YUAN Ziheng ◽  
...  
Author(s):  
Yang Hu ◽  
Yiwen Ding ◽  
Feng Xu ◽  
Jiayi Liu ◽  
Wenjun Xu ◽  
...  

Abstract In recent years, more and more attention has been paid to Human-Robot Collaborative Disassembly (HRCD) in the field of industrial remanufacturing. Compared with the traditional manufacturing, HRCD helps to improve the manufacturing flexibility with considering the manufacturing efficiency. In HRCD, knowledge could be obtained from the disassembly process and then provides useful information for the operator and robots to execute their disassembly tasks. Afterwards, a crucial point is to establish a knowledge-based system to facilitate the interaction between human operators and industrial robots. In this context, a knowledge recommendation system based on knowledge graph is proposed to effectively support Human-Robot Collaboration (HRC) in disassembly. A disassembly knowledge graph is constructed to organize and manage the knowledge in the process of HRCD. After that, based on this, a knowledge recommendation procedure is proposed to recommend disassembly knowledge for the operator. Finally, the case study demonstrates that the developed system can effectively acquire, manage and visualize the related knowledge of HRCD, and then assist the human operator to complete the disassembly task by knowledge recommendation, thus improving the efficiency of collaborative disassembly. This system could be used in the human-robot collaboration disassembly process for the operators to provide convenient knowledge recommendation service.


Author(s):  
Amina Ouatiq ◽  
Kamal ElGuemmat ◽  
Khalifa Mansouri ◽  
Mohammed Qbadou

Learners attend their courses in remote or hybrid systems find it difficult to follow one size fits all courses. These difficulties have increased with the pandemic, lockdown, and the stress they cause. Hence, the role of adaptive systems to recommend personalized learning resources according to the learner's profile. The purpose of this paper is to design a system for recommending learning objects according learner's condition, including his mental state, his COVID-19 history, as well as his social situation and ability to connect to the e-learning system on a regular basis. In this article, we present an architecture of a recommendation system for personalized learning objects based on ontologies and on rule-based reasoning, and we will also describe the inference rules required for the adaptation of the educational content to the needs of the learners, taking into account the learner’s health and mental state, as well as his social situation. The system designed, and validated using the unified modeling language (UML). It additionally allows teachers to have a holistic view of learners’ progress and situations.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chaohua Fang ◽  
Qiuyun Lu

With the rapid development of information technology and data science, as well as the innovative concept of “Internet+” education, personalized e-learning has received widespread attention in school education and family education. The development of education informatization has led to a rapid increase in the number of online learning users and an explosion in the number of learning resources, which makes learners face the dilemma of “information overload” and “learning lost” in the learning process. In the personalized learning resource recommendation system, the most critical thing is the construction of the learner model. Currently, most learner models generally have a lack of scientific focus that they have a single method of obtaining dimensions, feature attributes, and low computational complexity. These problems may lead to disagreement between the learner’s learning ability and the difficulty of the recommended learning resources and may lead to the cognitive overload or disorientation of learners in the learning process. The purpose of this paper is to construct a learner model to support the above problems and to strongly support individual learning resources recommendation by learning the resource model which effectively reduces the problem of cold start and sparsity in the recommended process. In this paper, we analyze the behavioral data of learners in the learning process and extract three features of learner’s cognitive ability, knowledge level, and preference for learning of learner model analysis. Among them, the preference model of the learner is constructed using the ontology, and the semantic relation between the knowledge is better understood, and the interest of the student learning is discovered.


2021 ◽  
pp. 63-71
Author(s):  
Yousef Abuzir ◽  
Mohamed Dwieb

With the rapid increase of Information technology, online services and social media, recommendation system becomes an important issue and a need for both the customer and business sectors. The main aim of traditional and online recommendation systems is to recommend the desired and the necessary services that are appropriate recommendations to users. Traditional recommendation systems often suffer from inefficient data analysis techniques, rating the different services without regard to the previous preferences of the users and do not meet the personal demands of the users. Therefore, in this paper we used a hybrid approach based on Knowledge graph and Machine Learning similarity function as a recommendation system. We used real datasets to conduct the experiment. We built the knowledge graph for the visitors, hotels and their ranks, and we used the knowledge graph and similarity scores to recommend a hotel or a set of hotels for the visitors based on former preferences and ratings of other visitors. The results show significant accuracy and good quality of service recommender systems with 93.5% for f-measure.


Sign in / Sign up

Export Citation Format

Share Document