scholarly journals Potential Drop Analysis of a Radial Distribution System with Various Loads

At present the green environment plays a crucial part in fighting against the global warming. The Electric Vehicles which are eco-friendly provides the solution for these environmental issues which promotes low carbon emission. In the present scenario variation of the power flow and voltage profile at specific nodal junctions in a radial distribution system, when Electric Vehicle has been connected as a load is essential This paper shows the potential drop analysis on a distribution system with Electric Vehicle as a load. The results provide the total real power loss, total reactive power loss occurs in the radial test bus system and the voltage magnitude at nodes for an IEEE standard bus system. The Backward/Forward sweep method has been implemented on IEEE test bus radial distribution system. Various types of loads such as residential, commercial, and industrial with Electric Vehicles are considered for testing. The results indicate that a drop in voltage when Electric Vehicles has been integrated into the grid along with other consumers. The programming results has been compared with standard values and found to be satisfactory. Suggestions’ for improving the voltage profile had also included in this paper.

Author(s):  
S. Bhongade ◽  
Sachin Arya

The work presented in this paper is carried out with the objective of identifying the optimal location and size (Kvar ratings) of shunt capacitors to be placed in radial distribution system, to have overall economy considering the saving due to energy loss minimization. To achieve this objective, a two stage methodology is adopted in this paper. In the first stage, the base case load flow of uncompensated distribution system is carried out. On the basis of base case load flow solution, Nominal voltage magnitudes and Loss Sensitivity Factors are calculated and the weak buses are selected for capacitor placement.In the second stage, Particle Swarm Optimization (PSO) algorithm is used to identify the size of the capacitors to be placed at the selected buses for minimizing the power loss. The developed algorithm is tested for 10-bus, 34-bus and 85-bus Radial Distribution Systems. The results show that there has been an enhancement in voltage profile and reduction in power loss thus resulting in much annual saving.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sanjay Jain ◽  
Ganga Agnihotri ◽  
Shilpa Kalambe ◽  
Renuka Kamdar

This paper intends to enumerate the impact of distributed generation (DG) on distribution system in terms of active as well as reactive power loss reduction and improved voltage stability. The novelty of the method proposed in this paper is the simple and effective way of sizing and siting of DG in a distribution system by using two-port Z-bus parameters. The validity of the method is verified by comparing the results with already published methods. Comparative study presented has shown that the proposed method leads existing methods in terms of its simplicity, undemanding calculation procedures, and less computational efforts and so does the time. The method is implemented on IEEE 69-bus test radial distribution system and results show significant reduction in distribution power losses with improved voltage profile of the system. Simulation is carried out in MATLAB environment for execution of the proposed algorithm.


2013 ◽  
Vol 768 ◽  
pp. 371-377 ◽  
Author(s):  
E. Rekha ◽  
D. Sattianadan ◽  
M. Sudhakaran

Distributed generators (DG) are much beneficial in reducing the losses effectively compared to other methods of loss reduction. It is expected to become more important in future generation. This paper deals with the multi DGs placement in radial distribution system to reduce the system power loss and improve the voltage profile by using the optimization technique of particle swarm optimization (PSO). The PSO provides a population-based search procedure in which individuals called particles change their positions with time. Initially, the algorithm randomly generates the particle positions representing the size and location of DG. The proposed PSO algorithm is used to determine optimal sizes and locations of multi-DGs. The objective function is the combination of real, reactive power loss and voltage profile with consideration of weights and impact indices with and without DG. Test results indicate that PSO method can obtain better results on loss reduction and voltage profile improvement than the simple heuristic search method on the IEEE33-bus and IEEE 90-bus radial distribution systems.


Distributed generation system penetration in the existing distribution system is done for minimizing the losses and improving the voltage profile. There are total five types of distributed generation systems exist based on their power delivery like distributed generation system injecting real and reactive power, supplying real power only, supplying reactive power only, absorbing reactive power only , supplying real power and absorbing reactive power. All these five types of distributed generation systems have different penetration effects on the radial distribution system. We get different voltage profiles and power losses for different types of distributed generation systems. The testing of these five types of distributed generation systems will be done on IEEE 33 bus radial distribution system. For computing, the line parameters and power losses of the above testing system the forward-backward sweep load flow method will be applied


Author(s):  
S. F. Mekhamer ◽  
R. H. Shehata ◽  
A. Y. Abdelaziz ◽  
M. A. Al-Gabalawy

In this paper, A novel modified optimization method was used to find the optimal location and size for placing distribution Static Compensator in the radial distribution test feeder in order to improve its performance by minimizing the total power losses of the test feeder, enhancing the voltage profile and reducing the costs. The modified grey wolf optimization algorithm is used for the first time to solve this kind of optimization problem. An objective function was developed to study the radial distribution system included total power loss of the system and costs due to power loss in system. The proposed method is applied to two different test distribution feeders (33 bus and 69 bus test systems) using different Dstatcom sizes and the acquired results were analyzed and compared to other recent optimization methods applied to the same test feeders to ensure the effectiveness of the used method and its superiority over other recent optimization mehods. The major findings from obtained results that the applied technique found the most minimized total power loss in system ,the best improved voltage profile and most reduction in costs due power loss compared to other methods .


2012 ◽  
Vol 1 (2) ◽  
pp. 56 ◽  
Author(s):  
M. Rostamzadeh ◽  
K. Valipour ◽  
S. J. Shenava ◽  
M. Khalilpour ◽  
N. Razmjooy

This paper proposes an Imperialist Competitive Algorithm (ICA) for optimal multiple distributed generations (DGs) placement and sizing in a distribution system. The objective is to minimize the total real power losses and improve the voltage profile within real and reactive power generation and voltage limits. Three types of DG are considered and the ICA is used to find the better sizes and locations of DGs for maximum real power losses reduction and voltage improvement for given number of DG units in each type. Both integer and continuous variables are considered in ICA, integer variable for locations and continues variable for sizes. The total real power losses and voltage profile evaluation are based on a power flow method for radial distribution system with the representation of DGs. The proposed method has been demonstrated on 33 bus radial distribution system. The efficiency of the ICA in reducing the total power losses and improving voltage is validated by comparing the obtained results with Particle Swarm Optimization (PSO) algorithm.


A huge review on greatest allocation of Distribution Static Compensator (DSTATCOM) strategies in Radial Distribution system (RDS) device for compensation of reactive power (Q), mitigation of electricity losses and enhancement in voltage profile is presented. DSTATCOM compensates bus voltage to restriction the strength factor, in addition with energetic and additionally reactive power flows in the RDS. It can additionally provide immediate and non-stop capacitive (C) and inductive (L) mode compensation. This system also injects quantity of lead or lagging compensating current, when it is connected with a same load or varying load. Various IEEE buses are used for checking the achievability of the optimization methods in distribution system. In few papers the presented approach is evaluated through evaluating it with previous techniques and benefits are shown by means of simulation results.


Sign in / Sign up

Export Citation Format

Share Document