Study on slope stability of frame prestressed anchor sheet pile wall with finite element strength reduction method

2021 ◽  
Vol 7 (1) ◽  
pp. 49
Author(s):  
Amna Saeed Al-Banaa ◽  
Zhou Yong

Slope stability analysis is performed in practical geotechnical engineering using the finite element method, which is an advanced method and is widely used by engineers. With the development of computer technology, it has become easy to study the slope's stability supported by frame prestressed anchor and sheet pile wall through the displacement-based finite element numerical analysis method, to calculate the safety factors. However, the expansion angle ψʹ is not widely covered. In this study, PLAXIS two-dimensional finite element method is using to establish the slope model supported by frame prestressed anchor and sheet pile wall, and the influence of expansion angle on slope deformation is studied. The results show that the expansion angle has a different effect on the convergence of the two-dimensional slope model. In the model slope, a prestressed frame anchor and sheet pile wall reinforce the slope. The failure mechanisms were unclear when ϕʹ= ψʹ (flow base). Besides, when the slope has high soil strength parameters (c' or φʹ), the expansion angle will affect the calculation results and convergence. In general, the expansion angle significantly influences the slope's stability and is not affected. Therefore, it was necessary to note the effect of the angle of expansion on stability.

2009 ◽  
Vol 31 (3-4) ◽  
Author(s):  
Stéphane Pierre Alain Bordascorres ◽  
Hung Nguyen-Dang ◽  
Quyen Phan-Phuong ◽  
Hung Nguyen-Xuan ◽  
Sundararajan Natarajan ◽  
...  

This communication shows how the smoothed finite element method (SFEM) very recently proposed by G. R. Liu [14] can be extended to elasto-plasticity. The SFEM results are in excellent agreement with the finite element (FEM) and analytical results. For the examples treated, the method is quite insensitive to mesh distortion and volumetric locking. Moreover, the SFEM yields more compliant load-displacement curves compared to the standard, displacement based FE method, as expected from the theoretical developments recently published in [4], [3] and [6].


Sign in / Sign up

Export Citation Format

Share Document