scholarly journals A Critique of Active Defense or ‘Hack Back’

Author(s):  
Anthony Caldwell ◽  
Kevin Curran
Keyword(s):  
2009 ◽  
Vol 32 (4) ◽  
pp. 817-827 ◽  
Author(s):  
Wei JIANG ◽  
Bin-Xing FANG ◽  
Zhi-Hong TIAN ◽  
Hong-Li ZHANG

2005 ◽  
Vol 6 (1) ◽  
pp. 105-118 ◽  
Author(s):  
G. M. Nava ◽  
L. R. Bielke ◽  
T. R. Callaway ◽  
M. P Castañeda

AbstractThe intestinal mucosa represents the most active defense barrier against the continuous challenge of food antigens and pathogenic microorganisms present in the intestinal lumen. Protection against harmful agents is conferred by factors such as gastric acid, peristalsis, mucus, intestinal proteolysis, and the intestinal biota. The establishment of beneficial bacterial communities and metabolites from these complex ecosystems has varying consequences for host health. This hypothesis has led to the introduction of novel therapeutic interventions based on the consumption of beneficial bacterial cultures. Mechanisms by which probiotic bacteria affect the microecology of the gastrointestinal tract are not well understood, but at least three mechanisms of action have been proposed: production/presence of antibacterial substances (e.g., bacteriocins or colicins), modulation of immune responses and specific competition for adhesion receptors to intestinal epithelium. The rapid establishment of bacterial communities has been thought to be essential for the prevention of colonization by pathogenic bacteria. Some animal models suggest that the reduction in bacterial translocation in neonatal animals could be associated with an increase in intestinal bacterial communities and bacteriocin-like inhibitory substances produced by these species. This review emphasizes the role of the intestinal microbiota in the reduction of the gastrointestinal infections and draws heavily on studies in poultry.


2021 ◽  
Vol 13 (7) ◽  
pp. 1262
Author(s):  
Leyi Shi ◽  
Shanshan Du ◽  
Yifan Miao ◽  
Songbai Lan

With the development of satellite communication networks and the increase of satellite services, security problems have gradually become some of the most concerning issues. Researchers have made great efforts, including conventional safety methods such as secure transmission, anti-jamming, secure access, and especially the new generation of active defense technology represented by MTD. However, few scholars have theoretically studied the influence of active defense technique on the performance of satellite networks. Formal modeling and performance analysis have not been given sufficient attention. In this paper, we focus on the performance evaluation of satellite network moving target defense system. Firstly, two Stochastic Petri Nets (SPN) models are constructed to analyze the performance of satellite network in traditional and active defense states, respectively. Secondly, the steady-state probability of each marking in SPN models is obtained by using the isomorphism relation between SPN and Markov Chains (MC), and further key performance indicators such as average time delay, throughput, and the utilization of bandwidth are reasoned theoretically. Finally, the proposed two SPN models are simulated based on the PIPE platform. In addition, the effect of parameters on the selected performance indexes is analyzed by varying the values of different parameters. The simulation results prove the correctness of the theoretical reasoning and draw the key factors affecting the performance of satellite network, which can provide an important theoretical basis for the design and performance optimization of the satellite network moving target defense system.


2021 ◽  
Author(s):  
Vaibhav Akashe ◽  
Roshan Lal Neupane ◽  
Mauro Lemus Alarcon ◽  
Songjie Wang ◽  
Prasad Calyam

1998 ◽  
Vol 36 (1) ◽  
pp. 59-90 ◽  
Author(s):  
Steven W. Hutcheson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document