scholarly journals New Integrable Problem of Motion of Point Vortices on the Sphere

2007 ◽  
pp. 211-223 ◽  
Author(s):  
A. V. Borisov ◽  
◽  
A. A. Kilin ◽  
I. S. Mamaev ◽  
◽  
...  
1996 ◽  
Vol 314 ◽  
pp. 1-25 ◽  
Author(s):  
Hassan Aref ◽  
Mark A. Stremler

Motivated by observations of Williamson & Roshko of the wake of an oscillating cylinder with three vortices per cycle, and by the analyses of Rott and Aref of the motion of three vortices with vanishing net circulation on the unbounded plane, the integrable problem of three interacting, periodic vortex rows is solved. The problem is ‘mapped’ onto a problem of advection of a passive particle by a certain set of fixed point vortices. The results of this mapped problem are then re-interpreted in terms of the motion of the vortices in the original problem. A rather complicated structure of the solution space emerges with a surprisingly large number of regimes of motion, some of them somewhat counter-intuitive. Representative cases are analysed in detail, and a general procedure is indicated for all cases. We also trace the bifurcations of the solutions with changing linear momentum of the system. For rational ratios of the vortex circulations all motions are periodic. For irrational ratios this is no longer true. The point vortex results are compared to the aforementioned wake experiments and appear to shed light on the experimental observations. Many additional possibilities for the wake dynamics are suggested by the analysis.


2019 ◽  
Vol 53 (16) ◽  
pp. 2055-2059
Author(s):  
S. A. Moskalenko ◽  
V. A. Moskalenko ◽  
I. V. Podlesny ◽  
I. A. Zubac

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 943
Author(s):  
Henryk Kudela

In this paper, the motion of the n-vortex system as it collapses to a point in finite time is studied. The motion of vortices is described by the set of ordinary differential equations that we are able to solve analytically. The explicit formula for the solution demands the initial location of collapsing vortices. To find the collapsing locations of vortices, the algebraic, nonlinear system of equations was built. The solution of that algebraic system was obtained using Newton’s procedure. A good initial iterate needs to be provided to succeed in the application of Newton’s procedure. An unconstrained Leverber–Marquart optimization procedure was used to find such a good initial iterate. The numerical studies were conducted, and numerical evidence was presented that if in a collapsing system n=50 point vortices include a few vortices with much greater intensities than the others in the set, the vortices with weaker intensities organize themselves onto the vortex sheet. The collapsing locations depend on the value of the Hamiltonian. By changing the Hamiltonian values in a specific interval, the collapsing curves can be obtained. All points on the collapse curves with the same Hamiltonian value represent one collapsing system of vortices. To show the properties of vortex sheets created by vortices, the passive tracers were used. Advection of tracers by the velocity induced by vortices was calculated by solving the proper differential equations. The vortex sheets are an impermeable barrier to inward and outward fluxes of tracers. Arising vortex structures are able to transport the passive tracers. In this paper, several examples showing the diversity of collapsing structures with the vortex sheet are presented. The collapsing phenomenon of many vortices, their ability to self organize and the transportation of the passive tracers are novelties in the context of point vortex dynamics.


2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Carina Geldhauser ◽  
Marco Romito

AbstractWe prove a mean field limit, a law of large numbers and a central limit theorem for a system of point vortices on the 2D torus at equilibrium with positive temperature. The point vortices are formal solutions of a class of equations generalising the Euler equations, and are also known in the literature as generalised inviscid SQG. The mean-field limit is a steady solution of the equations, the CLT limit is a stationary distribution of the equations.


2021 ◽  
Vol 33 (8) ◽  
pp. 087119
Author(s):  
Ivan S. Mamaev ◽  
Ivan A. Bizyaev
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document