scholarly journals Effect of Modified Atmosphere Packaging on Headspace Gas Concentrations Including Volatiles and Sensorial Attributes of Fresh-Cut Lettuce

Author(s):  
Manpreet Kaur ◽  
S.S. Dhumal ◽  
V.K. Garande ◽  
D.R. Patgaonkar ◽  
A.G. Bhoite ◽  
...  
Author(s):  
Md. Azizul Haque ◽  
Md. Asaduzzaman ◽  
Md. Sultan Mahomud ◽  
Md. Rizvi Alam ◽  
Alin Khaliduzzaman ◽  
...  

AbstractFresh-cut lettuce is a very well-known salad for today's routines because it obliges minimal preparation to minimize the loss of health beneficial vitamins, minerals, antioxidants and other phytochemicals. It is a prodigious challenge to serve its consumers fresh. Quality of freshly processed lettuce under high CO2 modified atmosphere packaging (MAP) has been investigated as a realistic alternative technique for its preservation. Storage under high CO2 atmospheric treatments exhibited a significant impact in microbial development, electrolyte leakage, volatile metabolites and sensory quality of fresh-cut iceberg lettuce. This storage condition (MAP 1: 5 kPa O2 and 20 kPa CO2 balanced by N2 at 7 °C for 6 days) inhibited the growth of mesophilic bacteria and yeasts; delayed the enzymatic browning (cut-edges and intact surface) of fresh-cut iceberg lettuce and overall visual quality was also in acceptance limit. The development of off-odors was perceived in high CO2 MAP as a consequence of volatiles (ethanol and acetaldehyde) accumulation which was persisted at an inexcusable level during 6 days of storage periods.


2015 ◽  
pp. 559-566
Author(s):  
I.C. Guimarães ◽  
E.G.T. Menezes ◽  
P.R.S. Borges ◽  
R. Leal ◽  
K.C. Reis ◽  
...  

1996 ◽  
Vol 121 (4) ◽  
pp. 722-729 ◽  
Author(s):  
Kevin I. Segall ◽  
Martin G. Scanlon

The first goal of this study was to determine the packaging film O2 permeability required to maintain a steady-state O2 concentration of 3% in modified-atmosphere packaging (MAP) of minimally processed romaine lettuce (Lactuca sativa L.). The second goal of the study was to determine the extent to which MAP could preserve lettuce quality and consequently extend product shelf life. Oxygen consumption rates of commercially prepared lettuce samples were determined in a closed system for each of three atmospheres (3% O2 combined with either 6%, 10%, or 14% CO2). Enzymatic, quadratic, and linear mathematical models were compared to determine which best described the respiratory data. The linear model was the most suitable and was used to predict the O2 consumption rate of the minimally processed romaine lettuce under the desired package headspace gas concentrations. The predicted O2 consumption rate was used to calculate the necessary O2 permeability for the packaging film. Packages (21.6 × 25.4 cm) were constructed from a polypropylene-polyethylene-laminate film with the appropriate O2 permeability. Packaged samples were stored under three modified atmospheres (MAs) (3% O2 combined with either 6%, 10%, or 14% CO2) for 20 days, and headspace gas concentrations, lettuce appearance, and color were evaluated every other day. Growth of pectinolytic and lactic acid bacteria was also studied. The O2 consumption rate of the lettuce decreased with increasing CO2 levels. The O2 levels in the MA packages equilibrated at 7% to 11%. Compared to a control atmosphere of air, MAP delayed the development of tissue discoloration. Preliminary results indicated no effect of MAP on microbial growth. Of the three CO2 levels, 10% was slightly more effective than 6% and 14%. Critical choice of packaging permeabilities combined with MAP maintained the quality of minimally processed romaine lettuce and thereby increased shelf life by about 50%.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 988
Author(s):  
Bernardo Pace ◽  
Imperatrice Capotorto ◽  
Michela Palumbo ◽  
Sergio Pelosi ◽  
Maria Cefola

Leaf edge browning is the main factor affecting fresh-cut lettuce marketability. Dipping in organic acids as well as the low O2 modified atmosphere packaging (MAP), can be used as anti-browning technologies. In the present research paper, the proper oxalic acid (OA) concentration, able to reduce respiration rate of fresh-cut iceberg lettuce, and the suitable packaging materials aimed to maintaining a low O2 during storage, were selected. Moreover, the combined effect of dipping (in OA or in citric acid) and packaging in low O2 was investigated during the storage of fresh-cut iceberg lettuce for 14 days. Results showed a significant effect of 5 mM OA on respiration rate delay. In addition, polypropylene/polyamide (PP/PA) was select as the most suitable packaging material to be used in low O2 MAP. Combining OA dipping with low O2 MAP using PP/PA as material, resulted able to reduce leaf edge browning, respiration rate, weight loss and electrolyte leakage, preserving the visual quality of fresh-cut lettuce until 8 days at 8 °C.


2012 ◽  
Vol 18 (3) ◽  
pp. 197-205 ◽  
Author(s):  
WL Li ◽  
XH Li ◽  
X Fan ◽  
Y Tang ◽  
J Yun

Effects of active modified atmosphere packaging (initial O2/CO2: 5/5; 30/5; and 80/0) and passive packaging [initial O2/CO2: 20.8/0 (air)] on the antioxidant capacity and sensory quality of fresh-cut ‘Yaoshan’ pear stored at 4 °C for 12 days were investigated. Samples stored in high O2 (30% and 80%) packages had higher phenolics and anthocyanin contents compared with those in passive and low O2 packages. After 12 days of storage, phenolics and anthocyanin contents of 80% O2 samples were 2.5 and 12 times, respectively, higher than those in the passive package and 3 and 2 times higher than those in low O2 package. High O2 modified atmosphere packaging was effective in keeping free radical scavenging capacity as measured by the DPPH assay. The sensory evaluation indicated that surface color of cut fruits were stable for at least 12 days in the high O2 modified atmosphere packaging. The results suggested that high O2 modified atmosphere packaging could be used to inhibit browning and prolong the shelf life of fresh-cut ‘Yaoshan’ pears in spite of more than 50% loss in vitamin C content.


Sign in / Sign up

Export Citation Format

Share Document