VALIDATION OF THE MODIFIED HDD EQUATION FOR THIN POROUS MEDIA BASED ON EXPERIMENTAL RESULTS

Author(s):  
Klünger Arthur Éster Beck ◽  
Dra. Raquel da Cunha Ribeiro da Silva ◽  
Christian Naaktgeboren, PhD
2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


2018 ◽  
Vol 10 (9) ◽  
pp. 3005
Author(s):  
Ling-feng Xie ◽  
Shu-liang Zou ◽  
Xiang-yang Li ◽  
Chang-shou Hong ◽  
Hong Wang ◽  
...  

Radon is internationally recognized as one of the seven seismic precursors. A self-assembly ultrasonic generator and experimental apparatus for radon measurement were utilized to explore the radon exhalation regularities of water-bearing porous media under different ultrasonic intensities. The experimental results showed that there was a coupling relationship among radon exhalation rate, moisture content, and ultrasonic frequency. With the increase of the frequency of the ultrasonic wave, its effect on the promotion of radon exhalation rate was found to be a more obviously positive linear correlation. The radon exhalation rate, which could climb to a maximum value of 0.179 Bq·m−2·s−1 in a naturally air-dried sample, increased at first and then decreased along with increased moisture content. Moreover, this study found that the ultrasonic wave had the most remarkable promoting effects on the radon exhalation rate of porous media with high moisture content, and there is a positive linear correlation between the growth rate of the radon exhalation rate and moisture content. The experimental results could provide a beneficial reference for the continual monitoring of radon in a seismically active belt and an explanation of radon anomalies; however, the proposed experimental model was simplified, so further insights are strictly required for a reliable correlation with the real monitoring of radon in a seismically active belt.


2016 ◽  
Vol 115 (3) ◽  
pp. 407-410 ◽  
Author(s):  
Lilit Yeghiazarian ◽  
Krishna Pillai ◽  
Rodrigo Rosati

Author(s):  
F. Pérez-Ràfols ◽  
P. Wall ◽  
A. Almqvist

In this paper, we study flow through thin porous media as in, e.g. seals or fractures. It is often useful to know the permeability of such systems. In the context of incompressible and iso-viscous fluids, the permeability is the constant of proportionality relating the total flow through the media to the pressure drop. In this work, we show that it is also relevant to define a constant permeability when compressible and/or piezo-viscous fluids are considered. More precisely, we show that the corresponding nonlinear equation describing the flow of any compressible and piezo-viscous fluid can be transformed into a single linear equation. Indeed, this linear equation is the same as the one describing the flow of an incompressible and iso-viscous fluid. By this transformation, the total flow can be expressed as the product of the permeability and a nonlinear function of pressure, which represents a generalized pressure drop.


Sign in / Sign up

Export Citation Format

Share Document