scholarly journals There Is Only One Fourier Transform

Author(s):  
Jens V. Fischer

Four Fourier transforms are usually defined, the Integral Fourier transform, the Discrete-Time Fourier transform (DTFT), the Discrete Fourier transform (DFT) and the Integral Fourier transform for periodic functions. However, starting from their definitions, we show that all four Fourier transforms can be reduced to actually only one Fourier transform, the Fourier transform in the distributional sense.

Author(s):  
Jens V. Fischer

Four Fourier transforms are usually defined, the Integral Fourier transform, the Discrete-Time Fourier transform (DTFT), the Discrete Fourier transform (DFT) and the Integral Fourier transform for periodic functions. However, starting from their definitions, we show that all four Fourier transforms can be reduced to actually only one Fourier transform, the Fourier transform in the distributional sense.


Author(s):  
Jens V. Fischer

In previous studies we used Laurent Schwartz’ theory of distributions to rigorously introduce discretizations and periodizations on tempered distributions. These results are now used in this study to derive a validity statement for four interlinking formulas. They are variants of Poisson’s Summation Formula and connect four commonly defined Fourier transforms to one another, the integral Fourier transform, the Discrete-Time Fourier Transform (DTFT), the Discrete Fourier Transform (DFT) and the Integral Fourier transform for periodic functions—used to analyze Fourier series. We prove that under certain conditions, these four Fourier transforms become particular cases of the Fourier transform in the tempered distributions sense. We first derive four interlinking formulas from four definitions of the Fourier transform pure symbolically. Then, using our previous results, we specify three conditions for the validity of these formulas in the tempered distributions sense.


Author(s):  
Jens V. Fischer

In previous studies we used Laurent Schwartz’ theory of distributions to rigorously introduce discretizations and periodizations on tempered distributions. These results are now used in this study to derive a validity statement for four interlinking formulas. They are variants of Poisson’s Summation Formula and connect four commonly defined Fourier transforms to one another, the integral Fourier transform, the Discrete-Time Fourier Transform (DTFT), the Discrete Fourier Transform (DFT) and the Integral Fourier transform for periodic functions—used to analyze Fourier series. We prove that under certain conditions, these four Fourier transforms become particular cases of the Fourier transform in the tempered distributions sense. We first derive four interlinking formulas from four definitions of the Fourier transform pure symbolically. Then, using our previous results, we specify three conditions for the validity of these formulas in the tempered distributions sense.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 335 ◽  
Author(s):  
Jens Fischer

In previous studies we used Laurent Schwartz’ theory of distributions to rigorously introduce discretizations and periodizations on tempered distributions. These results are now used in this study to derive a validity statement for four interlinking formulas. They are variants of Poisson’s Summation Formula and connect four commonly defined Fourier transforms to one another, the integral Fourier transform, the Discrete-Time Fourier Transform (DTFT), the Discrete Fourier Transform (DFT) and the integral Fourier transform for periodic functions—used to analyze Fourier series. We prove that under certain conditions, these four Fourier transforms become particular cases of the Fourier transform in the tempered distributions sense. We first derive four interlinking formulas from four definitions of the Fourier transform pure symbolically. Then, using our previous results, we specify three conditions for the validity of these formulas in the tempered distributions sense.


4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 2 ◽  
Author(s):  
Mesuma K. Atakishiyeva ◽  
Natig M. Atakishiyev ◽  
Juan Loreto-Hernández

In the present work, we discuss some additional findings concerning algebraic properties of the N-dimensional discrete Fourier transform (DFT) raising and lowering difference operators, recently introduced in [Atakishiyeva MK, Atakishiyev NM (2015), J Phys: Conf Ser 597, 012012; Atakishiyeva MK, Atakishiyev NM (2016), Adv Dyn Syst Appl 11, 81–92]. In particular, we argue that the most authentic symmetrical form of discretization of the integral Fourier transform may be constructed as the discrete Fourier transforms based on the odd points N only, while in the discrete Fourier transforms on the even points N this symmetry is spontaneously broken. This heretofore undetected distinction between odd and even dimensions is shown to be intimately related with the newly revealed algebraic properties of the above-mentioned DFT raising and lowering difference operators and, of course, is very consistent with the well-known formula for the multiplicities of the eigenvalues, associated with the N-dimensional DFT. In addition, we propose a general approach to deriving the eigenvectors of the discrete number operators N(N), that avoids the above-mentioned pitfalls in the structure of each even-dimensional case N = 2L.


Author(s):  
M. Younus Bhat ◽  
Aamir H. Dar

The linear canonical transform (LCT) provides a unified treatment of the generalized Fourier transforms in the sense that it is an embodiment of several well-known integral transforms including the Fourier transform, fractional Fourier transform, Fresnel transform. Using this fascinating property of LCT, we, in this paper, constructed associated wavelet packets. First, we construct wavelet packets corresponding to nonuniform Multiresolution analysis (MRA) associated with LCT and then those corresponding to vector-valued nonuniform MRA associated with LCT. We investigate their various properties by means of LCT.


2008 ◽  
Vol 3 (4) ◽  
pp. 74-86
Author(s):  
Boris A. Knyazev ◽  
Valeriy S. Cherkasskij

The article is intended to the students, who make their first steps in the application of the Fourier transform to physics problems. We examine several elementary examples from the signal theory and classic optics to show relation between continuous and discrete Fourier transform. Recipes for correct interpretation of the results of FDFT (Fast Discrete Fourier Transform) obtained with the commonly used application programs (Matlab, Mathcad, Mathematica) are given.


Geophysics ◽  
1985 ◽  
Vol 50 (9) ◽  
pp. 1500-1501
Author(s):  
B. N. P. Agarwal ◽  
D. Sita Ramaiah

Bhimasankaram et al. (1977) used Fourier spectrum analysis for a direct approach to the interpretation of gravity anomaly over a finite inclined dike. They derived several equations from the real and imaginary components and from the amplitude and phase spectra to relate various parameters of the dike. Because the width 2b of the dike (Figure 1) appears only in sin (ωb) term—ω being the angular frequency—they determined its value from the minima/zeroes of the amplitude spectra. The theoretical Fourier spectrum uses gravity field data over an infinite distance (length), whereas field observations are available only for a limited distance. Thus, a set of observational data is viewed as a product of infinite‐distance data with an appropriate window function. Usually, a rectangular window of appropriate distance (width) and of unit magnitude is chosen for this purpose. The Fourier transform of the finite‐distance and discrete data is thus represented by convolution operations between Fourier transforms of the infinite‐distance data, the window function, and the comb function. The combined effect gives a smooth, weighted average spectrum. Thus, the Fourier transform of actual observed data may differ substantially from theoretic data. The differences are apparent for low‐ and high‐frequency ranges. As a result, the minima of the amplitude spectra may change considerably, thereby rendering the estimate of the width of the dike unreliable from the roots of the equation sin (ωb) = 0.


2021 ◽  
pp. 204-268
Author(s):  
Victor Lazzarini

This chapter now turns to the discussion of filters, which extend the notion of spectrum beyond signals into the processes themselves. A gentle introduction to the concept of delaying signals, aided by yet another variant of the Fourier transform, the discrete-time Fourier transform, allows the operation of filters to be dissected. Another analysis tool, in the form of the z-transform, is brought to the fore as a complex-valued version of the discrete-time Fourier transform. A study of the characteristics of filters, introducing the notion of zeros and poles, as well as finite impulse response (FIR) and infinite impulse response (IIR) forms, composes the main body of the text. This is complemented by a discussion of filter design and applications, including ideas related to time-varying filters. The chapter conclusion expands once more the definition of spectrum.


Sign in / Sign up

Export Citation Format

Share Document