scholarly journals Removal of Heavy Metals, Nutrients and Sediment by a Stormwater Treatment Train; a Southeast Queensland, Medium-Density Residential Case Study

Author(s):  
Darren Drapper ◽  
Andy Hornbuckle

Urban stormwater runoff from a medium-density residential development in southeast Queensland has been monitored in the field since November 2013. A treatment train installed on the site includes rainwater tanks collecting roofwater, 200-micron mesh baskets installed in grated gully pits and two 850 mm high media filtration cartridges installed in an underground 4 m3 vault. A monitoring protocol developed by research partners, Queensland University of Technology (QUT), guided the monitoring process over a 4.5-year period. Heavy metals were included in the list of analytes during the monitoring period as the catchment is within 1 km of the environmentally-sensitive Moreton Bay, Queensland. Removal efficiencies observed at this site for the regulated pollutants; total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN) for the pit baskets were 61%, 28% and 45% respectively. The cartridge filters removed 78% TSS, 59% TP, 42% TN, 40% total copper and 51% total zinc. As the measured influent concentrations to the cartridge filters were low when compared to industry guidelines, the dataset was merged with international field results for TSS (n=39) and TP (n=32) but truncated within anticipated guideline levels. The combined dataset for the media filter demonstrates performance at 89% TSS, 66% TP and 42% TN. The total gross pollutant generation rate from the medium-density residential catchment was observed to be 0.24 m3/Ha/year, with a corresponding air-dried mass of 142.5 kg/Ha/year. Less than 2% of the gross pollutant mass was anthropogenic. The findings of this research suggest that the treatment train, and in particular the media filter, holds promise for the removal of total copper and total zinc, in addition to TSS, TP and TN, from urban stormwater runoff. Based on a maximum, low risk trigger TN concentration of 1.5 mg/L, the field test data from 4.5 years of operation and standard maintenance, suggests a 5.5-year replacement interval for the media filters.

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1307 ◽  
Author(s):  
Darren Drapper ◽  
Andy Hornbuckle

Urban stormwater runoff from a medium-density residential development in southeast Queensland has been monitored in the field since November 2013. A treatment train installed on the site includes rainwater tanks collecting roofwater, 200-micron mesh baskets installed in grated gully pits, and two 850-mm-high media filtration cartridges installed in an underground 4-m3 vault. The site has been monitored over a 4.5-year period. Removal efficiencies were observed at this site for the regulated pollutants; the corresponding values for total suspended solids (TSS), total phosphorus (TP), and total nitrogen (TN) for the pit baskets were 61%, 28%, and 45%, respectively. The cartridge filters removed 78% of TSS, 59% of TP, 42% of TN, 40% of total copper, and 51% of total zinc. As the measured influent TSS and TP concentrations to the cartridge filters were low when compared to industry guidelines, the U.S. field dataset was truncated to anticipated guideline levels, confirming results at 90% for TSS and 76% for TP. The total gross pollutant generation rate from the medium-density residential catchment was observed to be 0.24 m3/Ha/year, with a corresponding air-dried mass of 142.5 kg/Ha/year. Less than 2% of the gross pollutant mass was anthropogenic. This paper concludes that the treatment train, and in particular the media filter, provides good removal of total copper and total zinc as well as TSS, TP, and TN from urban stormwater runoff, with higher inlet concentrations producing better performance. Field test data from 58 months of operation and standard maintenance suggests that breakthrough of TSS and TP has not occurred yet.


Water ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 854 ◽  
Author(s):  
Jianlong Wang ◽  
Yuanling Zhao ◽  
Liqiong Yang ◽  
Nannan Tu ◽  
Guangpeng Xi ◽  
...  

2006 ◽  
Vol 510-511 ◽  
pp. 918-921 ◽  
Author(s):  
Ree Ho Kim ◽  
Sang Ho Lee ◽  
Jinwoo Jeong ◽  
Chae Sung Gee

The pollutants in urban stormwater runoff, which lead to non-point source contamination of water environment around cities, are of great concern. Lignocellulose fiber filters have potential to treat urban stormwater runoff because they are cheap and environmentally friendly, and can effectively remove particulate pollutants. However, the fiber filters alone cannot sufficiently remove soluble pollutants including heavy metals, nitrogen compounds, and phosphate. In this study, techniques for chemical modification of lignocellulose fiber filter were implemented to enhance the treatment efficiency of soluble pollutants in urban stormwater runoff. Using these chemically modified fiber filters together with polymer filter media, a new treatment device was examined to control the pollutants in first flush of stormwater. The results indicated that the filters incorporated into the treatment unit allow the control of urban stormwater runoff with minimal cost and high efficiency.


2014 ◽  
Vol 69 (12) ◽  
pp. 2460-2467 ◽  
Author(s):  
F. K. F. Geronimo ◽  
M. C. Maniquiz-Redillas ◽  
J. A. S. Tobio ◽  
L. H. Kim

Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.


2019 ◽  
Vol 28 (5) ◽  
pp. 3735-3744 ◽  
Author(s):  
Chunbo Jiang ◽  
Jiake Li ◽  
Tianshun Ruan ◽  
Zhaoxin Zhang ◽  
Huaien Li

Sign in / Sign up

Export Citation Format

Share Document