scholarly journals General Quantum Theory No Axiom Presumption: I ----Quantum Mechanics and Solutions to Crisises of Origins of Both Wave-Particle Duality and the First Quantization

Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Jia-Min Song

Density distribution function of classical statistical mechanics is generally generalized as a product of a general complex function and its complex Hermitian conjugate function, and the average of classical statistical mechanics is generalized as the average of the quantum mechanics. Furthermore, this paper derives three ones of the five axiom presumptions of quantum mechanics, makes the three axiom presumptions into three theorems of quantum mechanics, not only solves the crisis to hard understand, but also gets new theories and new discoveries, e.g., this paper solves the crisis of the origin of the wave-particle duality (i.e., complementary principle), derives operators, eigenvalues and eigenstates, deduces commutation relations for coordinate and momentum as well as the time and energy, and discovers quantum mechanics is just a generalization ( mechanics ) theory of the square root of ( density function of ) classical statistical mechanics, which will make people renew thinking modern physics development. In addition, this paper discovers the reason why the time derivative of Schrȍdinger doesn’t takes the derivative of space coordinates. Therefore, this paper gives solution to the Crisis of the first quantization origin.

Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Jia-Min Song

Density distribution function of classical statistical mechanics is generally generalized as a product of a general complex function and its complex Hermitian conjugate function, and the average of classical statistical mechanics is generalized as the average of the quantum mechanics. Furthermore, this paper derives three ones of the five axiom presumptions of quantum mechanics, e.g., deduces Schrȍdinger equation by two general ways, makes the three axiom presumptions into three theorems of quantum mechanics, not only solves the crisis to hard understand, but also gets new theories and new discoveries, e.g., this paper solves the crisis of the origin of the wave-particle duality (i.e., complementary principle), derives operators, eigenvalues and eigenstates, deduces commutation relations for coordinate and momentum as well as the time and energy, and discovers quantum mechanics is just a generalization ( mechanics ) theory of the complex square root of ( real density function of ) classical statistical mechanics, which will make people renew thinking modern physics development. In addition, this paper discovers the reason that Schrȍdinger equation doesn’t takes the time derivative of space coordinates. Therefore, this paper gives solution to the Crisis of the first quantization origin.


Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Yi-You Nie

This paper derives measurement and identical principles, then makes the two principles into measurement and identical theorems of quantum mechanics, plus the three theorems derived earlier, we deduce the axiom system of current quantum mechanics, the general quantum theory no axiom presumptions not only solves the crisis to understand in current quantum mechanics, but also obtains new discoveries, e.g., discovers the velocities of quantum collapse and entanglement are instantaneously infinitely large. We deduce the general Schrȍdinger equation of any n particles from two aspects, and the wave function not only has particle properties of the complex square root state vector of the classical probability density of any n particles, but also has the plane wave properties of any n particles. Thus, the current crisis of the dispute about the origin of wave- particle duality of any n microscopic particles is solved. We display the classical locality and quantum non-locality for any n particle system, show entanglement origins, and discover not only any n-particle wave function system has the original, superposition and across entanglements, but also the entanglements are of interactions preserving conservation or correlation, three kinds of entanglements directly give lots of entanglement sources. This paper discovers, one of two pillars of modern physics, quantum mechanics of any n particle system is a generalization ( mechanics ) theory of the complex square root ( of real density function ) of classical statistical mechanics, any n particle system’s quantum mechanics of being just a generalization theory of the complex square root of classical statistical mechanics is both a revolutionary discovery and key new physics, which are influencing people’s philosophical thinking for modern physics, solve all the crisises in current quantum theories, quantum information and so on, and make quantum theory have scientific solid foundations checked, no basic axiom presumption and no all quantum strange incomprehensible properties, because classical statistical mechanics and its complex square root have scientific solid foundations checked. Thus, all current studies on various entanglements and their uses to quantum computer, quantum information and so on must be further updated and classified by the new entanglements. This and our early papers derive quantum physics, solve all crisises of basses of quantum mechanics, e.g., wave-particle duality & the first quantization origins, quantum nonlocality, entanglement origins & classifications, wave collapse and so on.Key words: quantum mechanics, operator, basic presumptions, wave-particle duality, principle of measurement, identical principle, superposition principle of states, entanglement origin, quantum communication, wave collapse, classical statistical mechanics, classical mechanics


Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Jia-Min Song

Density distribution function of classical statistical mechanics is generally generalized as a product of a general complex function and its complex Hermitian conjugate function, and the average of classical statistical mechanics is generalized as the average of the quantum mechanics. Furthermore, this paper derives three ones of the five axiom presumptions of quantum mechanics, e.g., deduces Schrȍdinger equation by two general ways, makes the three axiom presumptions into three theorems of quantum mechanics, not only solves the crisis to hard understand, but also gets new theories and new discoveries, e.g., this paper solves the crisis of the origin of the wave-particle duality, derives operators, eigenvalues and eigenstates, deduces commutation relations for coordinate and momentum as well as the time and energy, and discovers quantum mechanics is just a generalization ( mechanics ) theory of the complex square root of ( real density function of ) classical statistical mechanics. Quantum mechanics being just a generalization theory of the complex square root of classical statistical mechanics is both new physics and revolutionary discovery, which are affecting people’s deep philosophical thinking for modern physics development, solve all the crisises of quantum mechanics, quantum information and so on, and make quantum mechanics have scientific solid bases being checked and both no basic axiom presumption and no all the quantum strange incomprehensible properties, because classical statistical mechanics and the complex square root of classical statistical mechanics have the scientific solid bases being checked. In addition, this paper discovers the reason no taking the time derivative of space coordinates in Schrȍdinger equation. Therefore, this paper gives solution to the crisis of the first quantization origin, and mainly deduces quantum physics no all the quantum current strange incomprehensible properties.


Author(s):  
C. D. McCoy

AbstractThe conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology and to the quantum measurement problem.


Sign in / Sign up

Export Citation Format

Share Document