primitive ontology
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 594
Author(s):  
Antoine Tilloy ◽  
Howard M. Wiseman

Spontaneous collapse models and Bohmian mechanics are two different solutions to the measurement problem plaguing orthodox quantum mechanics. They have, a priori nothing in common. At a formal level, collapse models add a non-linear noise term to the Schrödinger equation, and extract definite measurement outcomes either from the wave function (e.g. mass density ontology) or the noise itself (flash ontology). Bohmian mechanics keeps the Schrödinger equation intact but uses the wave function to guide particles (or fields), which comprise the primitive ontology. Collapse models modify the predictions of orthodox quantum mechanics, whilst Bohmian mechanics can be argued to reproduce them. However, it turns out that collapse models and their primitive ontology can be exactly recast as Bohmian theories. More precisely, considering (i) a system described by a non-Markovian collapse model, and (ii) an extended system where a carefully tailored bath is added and described by Bohmian mechanics, the stochastic wave-function of the collapse model is exactly the wave-function of the original system conditioned on the Bohmian hidden variables of the bath. Further, the noise driving the collapse model is a linear functional of the Bohmian variables. The randomness that seems progressively revealed in the collapse models lies entirely in the initial conditions in the Bohmian-like theory. Our construction of the appropriate bath is not trivial and exploits an old result from the theory of open quantum systems. This reformulation of collapse models as Bohmian theories brings to the fore the question of whether there exists `unromantic' realist interpretations of quantum theory that cannot ultimately be rewritten this way, with some guiding law. It also points to important foundational differences between `true' (Markovian) collapse models and non-Markovian models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William M. R. Simpson

AbstractThe primitive ontology approach to quantum mechanics seeks to account for quantum phenomena in terms of a distribution of matter in three-dimensional space (or four-dimensional spacetime) and a law of nature that describes its temporal development. This approach to explaining quantum phenomena is compatible with either a Humean or powerist account of laws. In this paper, I offer a powerist ontology in which the law is specified by Bohmian mechanics for a global configuration of particles. Unlike in other powerist ontologies, however, this law is not grounded in a structural power that is instantiated by the global configuration. Instead, I combine the primitive ontology approach with Aristotle’s doctrine of hylomorphism to create a new metaphysical model, in which the cosmos is a hylomorphic substance with an intrinsic power to choreograph the trajectories of the particles.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert C. Koons

AbstractAn Aristotelian philosophy of nature rejects the modern prejudice in favor of the microscopic, a rejection that is crucial if we are to penetrate the mysteries of the quantum world. I defend an Aristotelian model by drawing on both quantum chemistry and recent work on the measurement problem. By building on the work of Hans Primas, using the distinction between quantum and classical properties that emerges in quantum chemistry at the thermodynamic or continuum limit, I develop a new version of the Copenhagen interpretation, a version that is realist, holistic, and hylomorphic in character, allowing for the attribution of fundamental causal powers to human observers and their instruments. I conclude with a critique of non-hylomorphic theories of primitive ontology, including Bohmian mechanics, Everettianism, and GRW mass-density.


Author(s):  
Valia Allori

Scientific realism assumes that our best scientific theories can be regarded as (approximately) true. Quantum mechanics has long been regarded as at odds with scientific realism. It is now known that this is not true. However, scientific realists usually assume that the wave function represents physical entities. Chapter 11 discusses a particular approach which makes quantum mechanics compatible with scientific realism without assuming this: matter is instead represented by some spatio-temporal entity dubbed the primitive ontology. It argues how within this framework one developsa distinctive theory-construction schema, which allows us to perform a more informed theory evaluation by analyzing the various ingredients of the approach and their inter-relations.


Author(s):  
C. D. McCoy

AbstractThe conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology and to the quantum measurement problem.


Author(s):  
Jeffrey A. Barrett

We consider Wigner’s proposal for solving the quantum measurement problem. His solution involves a strong mind-body dualism, but it is also possible to provide a purely physical collapse solution to the quantum measurement problem. To this end, we consider the GRW formulation of quantum mechanics and three ways one might interpret it: GRWr, GRWm, and GRWf. These ways of interpreting the theory differ in the metaphysical commitments one makes and, hence, in how one explains one’s measurement records and hence one’s experience. This provides an introduction to the notions of an empirical ontology and a primitive ontology. We consider some of the comparative virtues and vices of the GRW formulation of quantum mechanics.


2018 ◽  
Vol 5 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Valia Allori

In this paper, I wish to connect the recent debate in the philosophy of quantum mechanics concerning the nature of the wave function to the historical debate in the philosophy of science regarding the tenability of scientific realism. Advocating realism about quantum mechanics is particularly challenging when focusing on the wave function. According to the wave function ontology approach, the wave function is a concrete physical entity. In contrast, according to an alternative viewpoint, namely the primitive ontology approach, the wave function does not represent physical objects. In this paper, I argue that the primitive ontology approach can naturally be interpreted as an instance of the so-called explanationist realism, which has been proposed as a response to the pessimistic-meta induction argument against scientific realism. If my arguments are sound, then one could conclude that: (1) contrary to what is commonly thought, if explanationism realism is a good response to the pessimistic-meta induction argument, it can be straightforwardly extended also to the quantum domain; (2) the primitive ontology approach is in better shape than the wave function ontology approach in resisting the pessimistic-meta induction argument against scientific realism.


Sign in / Sign up

Export Citation Format

Share Document