scholarly journals On the Second Dipole Moment of Dirac’s Particle

Author(s):  
Engel Roza

An analysis is presented of the possible existence of a second anomalous dipole moment of Dirac’s particle next to the one associated with the angular momentum. It includes a discussion why, in spite of his own derivation, Dirac has doubted about its relevancy. It is shown why since then it has been overlooked and why it has vanished from leading textbooks. A critical survey is given on the reasons of its reject, including the failure of attempts to measure and the perceived violations of time reversal symmetry and charge-parity symmetry. It is emphasized that the anomalous electric dipole moment of the pointlike electron (AEDM) is fundamentally different from the quantum field type electric dipole moment of an electron (eEDM) as defined in the standard model of particle physics. The analysis has resulted into the identification of a third type Dirac particle, next to the electron type and the Majorana particle. It is shown that, unlike as in the case of the electron type, its second anomalous dipole moment is real valued and is therefore subject to polarization in a vector field. Examples are given that it may have a possible impact in the nuclear domain and in the gravitational domain.

Author(s):  
Engel Roza

An analysis is presented of the possible existence of a second anomalous dipole moment of Dirac’s particle next to the one associated with the angular momentum. It includes a discussion why, in spite of his own derivation, Dirac has doubted about its relevancy. It is shown why since then it has been overlooked and why it has vanished from leading textbooks. A critical survey is given on the reasons of its reject, including the failure of attempts to measure and the perceived violations of time reversal symmetry and charge-parity symmetry. It is emphasized that the anomalous electric dipole moment of the pointlike electron (AEDM) is fundamentally different from the quantum field type electric dipole moment of an electron (eEDM) as defined in the standard model of particle physics. The analysis has resulted into the identification of a third type Dirac particle, next to the electron type and the Majorana particle. It is shown that, unlike as in the case of the electron type, its second anomalous dipole moment is real valued and is therefore subject to polarization in a vector field. Examples are given that it may have a possible impact in the nuclear domain and in the gravitational domain.


Author(s):  
Engel Roza

An analysis is presented of the possible existence of a second anomalous dipole moment of Dirac’s particle next to the one associated with the angular momentum. It includes a discussion why, in spite of his own derivation, Dirac has doubted about its relevancy. It is shown why since then it has been overlooked and why it has vanished from leading textbooks. A critical survey is given on the reasons of its reject, including the failure of attempts to measure and the perceived violations of time reversal symmetry and charge-parity symmetry. It is emphasized that the anomalous electric dipole moment of the pointlike electron (AEDM) is fundamentally different from the quantum field type electric dipole moment of an electron (eEDM) as defined in the standard model of particle physics. The analysis has resulted into the identification of a third type Dirac particle, next to the electron type and the Majorana particle. It is shown that, unlike as in the case of the electron type, its second anomalous dipole moment is real valued and is therefore subject to polarization in a vector field. Examples are given that it may have a possible impact in the nuclear domain and in the gravitational domain.


Author(s):  
Engel Roza

An analysis is presented of the possible existence of a second anomalous dipole moment of Dirac’s particle next to the angular one. It includes a discussion why, in spite of his own derivation, Dirac has doubted about its relevancy. It is shown why since then it has been overlooked and why it has vanished from leading textbooks. A critical survey is given on the reasons of its reject, including the failure of attempts to measure and the perceived violations of time reversal symmetry and chargeparity symmetry. It is emphasized that the anomalous electric dipole moment of the pointlike electron (AEDM) is fundamentally different from the quantum field type electric dipole moment of an electron (eEDM) as defined in the standard model of particle physics and that its measurement requires different instrumentation. A proposal has been described how to prove or disprove its existence by experiment. Moreover, by reference from literature, the possible impact is discussed in the nuclear domain and in the gravitational domain.


Author(s):  
Engel Roza

An analysis is presented of the possible existence of a second anomalous dipole moment of Dirac’s particle next to the angular one. It includes a discussion why, in spite of his own derivation, Dirac has denied its relevancy. It is shown why since then it has been overlooked and why it has vanished from leading textbooks. A critical survey is given on the reasons of its reject, including the failure of attempts to measure and the perceived violations of time reversal symmetry and charge-parity symmetry. Moreover, by reference from literature, the possible impact is discussed in the nuclear domain and in the gravitational domain.


Author(s):  
Engel Roza

An analysis is presented of the possible existence of a second anomalous dipole moment of Dirac’s particle next to the angular one. It includes a discussion why, in spite of his own derivation, Dirac has denied its relevancy. It is shown why since then it has been overlooked and why it has vanished from leading textbooks. A critical survey is given on the reasons of its reject, including the failure of attempts to measure and its perceived violation of the CPT theorem. Moreover, by reference from literature, the possible impact is discussed in the nuclear domain and in the gravitational domain if it would exist.


Author(s):  
Engel Roza

An analysis is presented of the possible existence of a second anomalous dipole moment of Dirac’s particle next to the angular one. It includes a discussion why, in spite of his own derivation, Dirac has denied its relevancy. It is shown why since then it has been overlooked and why it has vanished from leading textbooks. A critical survey is given on the reasons of its reject, including the failure of attempts to measure and its perceived violation of the CPT theorem. Moreover, by reference from literature, the possible impact is discussed in the nuclear domain and in the gravitational domain if it would exist.


2015 ◽  
Vol 19 (01-03) ◽  
pp. 527-534
Author(s):  
Kamlesh Awasthi ◽  
Hung-Yu Hsu ◽  
Hung-Chu Chiang ◽  
Chi-Lun Mai ◽  
Chen-Yu Yeh ◽  
...  

Polarized electroabsorption (E-A) spectra of highly efficient porphyrin sensitizers (YD2 and YD2-oC8) have been measured in benzene solution. Polarized E-A spectra of these push–pull porphyrins embedded in poly(methyl methacrylate) films or sensitized on TiO 2 films are also observed. Based on the analysis of the E-A spectra, the magnitude of the electric dipole moment both in the ground state and in the lowest excited state have been evaluated in solution and in solid films. The electric dipole moment in the excited state of these compounds is very large on TiO 2 films, suggesting the interfacial charge transfer on TiO 2 surface following photoexcitation of porphyrin dyes. The electric dipole moment in the excited state evaluated from the E-A spectra is very different from the one evaluated from the electrophotoluminescence spectra on TiO 2, suggesting that the strong local field of TiO 2 films is applied to the fluorescing dyes attached to TiO 2 films.


2018 ◽  
Vol 175 ◽  
pp. 01014 ◽  
Author(s):  
Boram Yoon ◽  
Tanmoy Bhattacharya ◽  
Rajan Gupta

For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.


Sign in / Sign up

Export Citation Format

Share Document