good probe
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Yu Shi ◽  
Qiyuan Pan ◽  
Jiliang Jing

AbstractWe investigate the holographic subregion complexity (HSC) and compare it with the holographic entanglement entropy (HEE) in the metal/superconductor phase transition for the Born–Infeld (BI) electrodynamics with full backreaction. Based on the subregion CV conjecture, we find that the universal terms of HSC remain finite during phase transitions, and the HSC is a good probe to the critical temperature in the holographic superconducting system. Furthermore, we observe that for the operator $$\mathcal {O}_{+}$$ O + , the HSC of the superconducting phase decreases first and then increases as the BI parameter increases, which is completely different from that of HEE, and the value of the BI parameter corresponding to the inflection point of HSC is larger than that of HEE. But for the operator $$\mathcal {O}_{-}$$ O - , the HSC increases monotonically as the BI parameter increases, which is similar to that of HEE.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yu-Sen An ◽  
Teng Ji ◽  
Li Li

Abstract We study the magnetotransport in a minimal holographic setup of a metal- insulator transition in two spatial dimensions. Some generic features are obtained without referring to the non-linear details of the holographic theory. The temperature dependence of resistivity is found to be well scaled with a single parameter T0, which approaches zero at some critical charge density ρc, and increases as a power law T0∼ |ρ − ρc|1/2 both in metallic (ρ > ρc) and insulating (ρ < ρc) regions in the vicinity of the transition. Similar features also happen by changing the disorder strength as well as magnetic field. By requiring a positive definite longitudinal conductivity in the presence of an applied magnetic field restricts the allowed parameter space of theory parameters. We explicitly check the consistency of parameter range for two representative models, and compute the optical conductivities for both metallic and insulating phases, from which a disorder- induced transfer of spectral weight from low to high energies is manifest. We construct the phase diagram in terms of temperature and disorder strength. The complexity during the transition is studied and is found to be not a good probe to the metal-insulator transition.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jing Shang ◽  
Ruonan Gao ◽  
Fu Su ◽  
Huaguang Wang ◽  
Dan Zhu

The complex rheology and the phase behavior of thermally sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels have been investigated in both the swollen and collapsed states by using microrheology. To avoid the interactions between the tracer probes and the PNIPAM microgels, such as the adsorption or the depletion effect, the probes of silica (SiO2) particles have been grafted with PNIPAM chains (SiO2-PNIPAM) and characterized with Fourier transform infrared spectroscopy (FTIR). The successful preparation of SiO2-PNIPAM has also been proved by the investigation of the particle size and morphology with dynamic light scattering (DLS) and transmission electron microscope (TEM) below and beyond the phase transition temperature of PNIPAM. The microrheology of the PNIPAM microgel suspension has been investigated by using the prepared SiO2-PNIPAM particles as microrheological probes, and the results show that the diffusive coefficient of the probes in the swollen state is one-fifth of that in the collapsed state, and the viscosity of the PNIPAM microgel suspension in the swollen state is four times higher than that in the collapsed state, indicating SiO2-PNIPAM is a good probe in the microrheological study of PNIPAM microgel suspensions.


2019 ◽  
Vol 622 ◽  
pp. A120 ◽  
Author(s):  
S. Uttenthaler ◽  
I. McDonald ◽  
K. Bernhard ◽  
S. Cristallo ◽  
D. Gobrecht

Context. We follow-up on a previous finding that AGB Mira variables containing the third dredge-up indicator technetium (Tc) in their atmosphere form a different sequence of K − [22] colour as a function of pulsation period than Miras without Tc. A near- to mid-infrared colour such as K − [22] is a good probe for the dust mass-loss rate of the stars. Contrary to what might be expected, Tc-poor Miras show redder K − [22] colours (i.e. higher dust mass-loss rates) than Tc-rich Miras at a given period. Aims. Here, the previous sample is extended and the analysis is expanded towards other colours and dust spectra. The most important aim is to investigate if the same two sequences can be revealed in the gas mass-loss rate. Methods. We analysed new optical spectra and expanded the sample by including more stars from the literature. Near- and mid-IR photometry and ISO dust spectra of our stars were investigated where available. Literature data of gas mass-loss rates of Miras and semi-regular variables were collected and analysed. Results. Our results show that Tc-poor Miras are redder than Tc-rich Miras in a broad range of the mid-IR, suggesting that the previous finding based on the K − [22] colour is not due to a specific dust feature in the 22 μm band. We establish a linear relation between K − [22] and the gas mass-loss rate. We also find that the 13 μm feature disappears above K − [22]≃2.17 mag, corresponding to Ṁg ∼ 2.6 × 10−7 M⊙ yr−1. No similar sequences of Tc-poor and Tc-rich Miras in the gas mass-loss rate vs. period diagram are found, most probably owing to limitations in the available data. Conclusions. Different hypotheses to explain the observation of two sequences in the P vs. K − [22] diagram are discussed and tested, but so far, none of them convincingly explains the observations. Nevertheless, we might have found an hitherto unknown but potentially important process influencing mass loss on the TP-AGB.


2018 ◽  
Vol 14 (S343) ◽  
pp. 529-530
Author(s):  
Stefan Uttenthaler ◽  
Iain McDonald ◽  
Klaus Bernhard ◽  
Sergio Cristallo ◽  
David Gobrecht

AbstractWe follow up on a previous finding that Miras containing the third dredge-up (3DUP) indicator technetium (Tc) in their atmosphere form a different sequence of K – [22] colour as a function of pulsation period than Miras without Tc. A near-to-mid-infrared colour such as K – [22] is a good probe for the dust mass-loss rate (MLR) of these AGB stars. Contrary to what one might naïvely expect, Tc-poor Miras show redderK – [22] colours (i.e. higher dust MLRs) than Tc-rich Miras at a given period. In the follow-up work, the previous sample is extended and the analysis is expanded towards other colours and ISO dust spectra to check if the previous finding is due to a specific dust feature in the 22 μm band. We also investigate if the same two sequences can be revealed in the gas MLR. Different hypotheses to explain the observation of two sequences in the P vs. K – [22] diagram are discussed and tested, but so far none of them convincingly explains the observations.


2018 ◽  
Vol 175 ◽  
pp. 01014 ◽  
Author(s):  
Boram Yoon ◽  
Tanmoy Bhattacharya ◽  
Rajan Gupta

For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.


2017 ◽  
Vol 13 (S337) ◽  
pp. 324-325
Author(s):  
Frank R. N. Chambers ◽  
Anna L. Watts

AbstractSuperburst oscillations are high frequency X-ray variations observed during hours’ long superbursts on accreting neutron stars. We investigate a potential mechanism to explain these observations; a buoyant r-mode, excited in the ocean layers of the star. These modes are affected by ash composition in the ocean so are a good probe of nuclear burning processes. The phenomenon could be used in pulse profile modelling as a way of measuring neutron star mass and radius, and so the dense matter equation of state.


2017 ◽  
Vol 605 ◽  
pp. A37 ◽  
Author(s):  
J.-B. Delisle ◽  
A. C. M. Correia ◽  
A. Leleu ◽  
P. Robutel

We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV) is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet. We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for Kepler-88 b the rotation can be chaotic.


2014 ◽  
Vol 6 (8) ◽  
pp. 2715-2721 ◽  
Author(s):  
Li Li ◽  
Qiaolin Zhang ◽  
Yaping Ding ◽  
Xiaoyong Cai ◽  
Shuqing Gu ◽  
...  

l-Cysteine capped CdTe/ZnS NPs were prepared in an aqueous system and the fluorescence intensity was significantly reduced when the concentration of cephalexin increased, which proves a good probe for determination of cephalexin in pharmaceutical fields.


Sign in / Sign up

Export Citation Format

Share Document