scholarly journals Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study

Author(s):  
Siti Khaerunnisa ◽  
Hendra Kurniawan ◽  
Rizki Awaluddin ◽  
Suhartati Suhartati ◽  
Soetjipto Soetjipto

COVID-19, a new strain of coronavirus (CoV), was identified in Wuhan, China, in 2019. No specific therapies are available and investigations regarding COVID-19 treatment are lacking. Liu et al. (2020) successfully crystallised the COVID-19 main protease (Mpro), which is a potential drug target. The present study aimed to assess bioactive compounds found in medicinal plants as potential COVID-19 Mpro inhibitors, using a molecular docking study. Molecular docking was performed using Autodock 4.2, with the Lamarckian Genetic Algorithm, to analyse the probability of docking. COVID-19 Mpro was docked with several compounds, and docking was analysed by Autodock 4.2, Pymol version 1.7.4.5 Edu, and Biovia Discovery Studio 4.5. Nelfinavir and lopinavir were used as standards for comparison. The binding energies obtained from the docking of 6LU7 with native ligand, nelfinavir, lopinavir, kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, epicatechin-gallate, zingerol, gingerol, and allicin were -8.37, -10.72, -9.41, -8.58, -8.47, -8.17, -7.99, -7.89, -7.83, -7.31, -7.05, -7.24, -6.67, -5.40, -5.38, and -4.03 kcal/mol, respectively. Therefore, nelfinavir and lopinavir may represent potential treatment options, and kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, and epicatechin-gallate appeared to have the best potential to act as COVID-19 Mpro inhibitors. However, further research is necessary to investigate their potential medicinal use.

2020 ◽  
Author(s):  
LALIT SAMANT ◽  
Vyomesh Javle

COVID-19, a new strain of coronavirus (CoV), was identified in Wuhan, China, in 2019. No specific therapies are available, and investigations regarding COVID-19 treatment are lacking. Crystallised COVID-19 main protease (Mpro), which is a potential drug target. The present study aimed to assess drugs found in literature as potential COVID-19 Mpro inhibitors, using a molecular docking study. Molecular docking was performed using Autodock 4.2, with the Lamarckian Genetic Algorithm, to analyse the probability of docking. The docking was cross-validated using Swiss Dock. COVID-19 Mpro was docked with several compounds, and docking was analysed by Biovia Discovery Studio 2020. Quinine and hydroxychloroquine were used as standards for comparison. The binding energies obtained from the docking of 6LU7, 2GTB with screened drugs viz., Quinine, Artesunate, Clotrimazol, Artemether, Quercetin, Mefloquine, ciprofloxacin, clindamycin, cipargamin, SJ-733 were in between -7.0 to -9.6 kcal/mol. On consideration of similar binding energy obtained from Autodock vina and SWISSDock and interaction residue pattern specifically (GLU 166,CYS 145, CYS44 and MET 49 residue) for SJ-733 & JPC-3210 may represent potential treatment options, and appeared to have the best potential to act as COVID-19 Mpro inhibitors. However, further research is necessary to investigate their potential medicinal use against CoV.


2020 ◽  
Author(s):  
LALIT SAMANT ◽  
Vyomesh Javle

COVID-19, a new strain of coronavirus (CoV), was identified in Wuhan, China, in 2019. No specific therapies are available, and investigations regarding COVID-19 treatment are lacking. Crystallised COVID-19 main protease (Mpro), which is a potential drug target. The present study aimed to assess drugs found in literature as potential COVID-19 Mpro inhibitors, using a molecular docking study. Molecular docking was performed using Autodock 4.2, with the Lamarckian Genetic Algorithm, to analyse the probability of docking. The docking was cross-validated using Swiss Dock. COVID-19 Mpro was docked with several compounds, and docking was analysed by Biovia Discovery Studio 2020. Quinine and hydroxychloroquine were used as standards for comparison. The binding energies obtained from the docking of 6LU7, 2GTB with screened drugs viz., Quinine, Artesunate, Clotrimazol, Artemether, Quercetin, Mefloquine, ciprofloxacin, clindamycin, cipargamin, SJ-733 were in between -7.0 to -9.6 kcal/mol. On consideration of similar binding energy obtained from Autodock vina and SWISSDock and interaction residue pattern specifically (GLU 166,CYS 145, CYS44 and MET 49 residue) for SJ-733 & JPC-3210 may represent potential treatment options, and appeared to have the best potential to act as COVID-19 Mpro inhibitors. However, further research is necessary to investigate their potential medicinal use against CoV.


Author(s):  
SHAILENDRA SANJAY SURYAWANSHI ◽  
POOJA BHAVAKANA JAYANNACHE ◽  
RAJKUMAR SANJAY PATIL ◽  
PALLED MS ◽  
ALEGAON SG

Objectives: The objective of the study was to screen and assess the selected bioactive bioflavonoids in medicinal plants as potential coronaviruses (CoV) main protease (Mpro) inhibitors using molecular docking studies. Methods: We have investigated several bioflavonoids which include apigenin, galangin, glycitein, luteolin, morin, naringin, resveratrol, and rutin. Nelfinavir and lopinavir were used as standard antiviral drugs for comparison. Mpro was docked with selected compounds using PyRx 0.8 and docking was analyzed by PyRx 0.8 and Biovia Discovery Studio 2019. Results: The binding energies obtained from the docking of 6LU7 with native ligand, nelfinavir, lopinavir, apigenin, galangin, glycitein, luteolin, morin, naringin, resveratrol, and rutin were found to be −7.4, −8.3, −8.0, −7.8, −7.3, −7, −7.4, −7.6, −7.8, −6.9, and −9 kcal/mol, respectively. Conclusion: From the binding energy calculations, we can conclude that nelfinavir and lopinavir may represent potential treatment options and apigenin, galangin, glycitein, luteolin, morin, naringin, resveratrol, and rutin found to possess the best inhibitors of CoV disease-19 main protease.


2020 ◽  
Author(s):  
Anurag Agrawal ◽  
Nem Kumar Jain ◽  
Neeraj Kumar ◽  
Giriraj T Kulkarni

This study belongs to identification of suitable COVID-19 inhibitors<br><div><br></div><div>Coronavirus became pandemic very soon and is a potential threat to human lives across the globe. No approved drug is currently available therefore an urgent need has been developed for any antiviral therapy for COVID-19. For the molecular docking study, ten herbal molecules have been included in the current study. The three-dimensional chemical structures of molecules were prepared through ChemSketch 2015 freeware. Molecular docking study was performed using AutoDock 4.2 simulator and Discovery studio 4.5 was employed to predict the active site of target enzyme. Result indicated that all-natural molecules found in the active site of enzyme after molecular docking. Oxyacanthine and Hypericin (-10.990 and -9.05 and kcal/mol respectively) have shown good binding efficacy among others but Oxyacanthine was the only natural product which made some of necessary interactions with residues in the enzyme require for target inhibition. Therefore Oxyacanthine may be considered to be potential inhibitor of main protease enzyme of virus but need to be explored for further drug development process. <br></div>


2020 ◽  
Author(s):  
abde lina ◽  
Khedidja BENAROUS ◽  
Mohamed Yousfi

2019-nCoV Coronavirus spread all over the world and obliged one billion people in open confinement, no treatments or vaccine have been yet found against this pandemic. The Main Protease (M<sup>pro</sup>) is an attractive drug target, because it is the essential protein for the virus invasion. This study aims to test in silico the effect of five vitamins and a natural antioxidant against M<sup>pro</sup>, using molecular docking study, with Autodock Vina and Discovery Studio visualizer softwares. The used inhibitors were chosen based on their beneficial properties such as Tocopherol (vitamin E), Thiamine (vitamin B1), Pantothenic acid (vitamin B5), Pyridoxine (vitamin B6), Biotin (vitamin B7), and Glutathione (GSH), the best inhibitor pose was chosen based on the repetition ratio (RR) and the minimum affinity energy value (MEV). The results show that Glutathione is the best inhibitor model among the other tested vitamins in the active site of M<sup>pro</sup> with a RR value of 94% and MEV of - 5.5 kcal/mol, the compatibility of Glutathione structure inside the binding pocket as a tripeptide model found to be similar to the native ligand of M<sup>pro</sup>. Moreover, Thiamine, Biotin, and Tocopherol are saved as satisfied inhibitors to M<sup>pro</sup>, Pyridoxine was the weakest inhibitor. Depending on this result, we recommend the use of Glutathione and vitamin B family as a supportive strategy for the treatment of COVID-19.<br>


2020 ◽  
Author(s):  
abde lina ◽  
Khedidja BENAROUS ◽  
Mohamed Yousfi

2019-nCoV Coronavirus spread all over the world and obliged one billion people in open confinement, no treatments or vaccine have been yet found against this pandemic. The Main Protease (M<sup>pro</sup>) is an attractive drug target, because it is the essential protein for the virus invasion. This study aims to test in silico the effect of five vitamins and a natural antioxidant against M<sup>pro</sup>, using molecular docking study, with Autodock Vina and Discovery Studio visualizer softwares. The used inhibitors were chosen based on their beneficial properties such as Tocopherol (vitamin E), Thiamine (vitamin B1), Pantothenic acid (vitamin B5), Pyridoxine (vitamin B6), Biotin (vitamin B7), and Glutathione (GSH), the best inhibitor pose was chosen based on the repetition ratio (RR) and the minimum affinity energy value (MEV). The results show that Glutathione is the best inhibitor model among the other tested vitamins in the active site of M<sup>pro</sup> with a RR value of 94% and MEV of - 5.5 kcal/mol, the compatibility of Glutathione structure inside the binding pocket as a tripeptide model found to be similar to the native ligand of M<sup>pro</sup>. Moreover, Thiamine, Biotin, and Tocopherol are saved as satisfied inhibitors to M<sup>pro</sup>, Pyridoxine was the weakest inhibitor. Depending on this result, we recommend the use of Glutathione and vitamin B family as a supportive strategy for the treatment of COVID-19.<br>


2020 ◽  
Vol 11 (1) ◽  
pp. 7981-7993

The infection of the global COVID-19 pandemic and the absence of any possible treatment options warrants the use of all available resources to find effective drugs against this scourge. Various ongoing researches have been searching for the new drug candidate against COVID-19 infection. The research objective is based on the molecular docking study of inhibition of the main protease of COVID-19 by natural compounds found in Allium sativum and Allium cepa. Lipinski rule of five and Autodock 4.2 was used by using the Lamarckian Genetic Algorithm to perform Molecular docking to analyze the probability of docking. Further, ADME analysis was also performed by using SwissADME, which is freely available on the web. In the present study, we identified S-Allylcysteine sulfoxide (Alliin), S-Propyl cysteine, S-Allylcysteine, S-Ethylcysteine, S-Allylmercaptocysteine, S-Methylcysteine, S-propyl L-cysteine with binding energies (-5.24, -4.49, -4.99, -4.91, -4.79, -4.76, -5.0 kcal/mol) as potential inhibitor candidates for COVID-19. Out of 7 selected compounds, alliin showed the best binding efficacy with target protein 6LU7. In silico ADME analysis revealed that these compounds are expected to have a standard drug-like property as well. Our findings propose that natural compounds from garlic and onion can be used as potent inhibitors against the main protease of COVID-19, which could be helpful in combating the COVID-19 pandemic.


2021 ◽  
Vol 1 (1) ◽  
pp. 25-31
Author(s):  
Achal Mishra ◽  
Radhika Waghela

SARS-CoV-2, a new type of Coronavirus, has affected more millions of people worldwide. From the spread of this infection, many studies related to this virus and drug designing for the treatment have been started. Most of the studies target the SARS-CoV-2 main protease, spike protein of SASR-CoV-2, and some are targeting the human furin protease. In the current work, we chose the clinically used drug molecules remdesivir, favipiravir, lopinavir, hydroxychloroquine, and chloroquine onto the target protein SARS-CoV-2 main protease. Docking studies were performed using Arguslab, while Discovery Studio collected 2D and 3D pose views with the crystal structure of COVID-19 main protease in complex with an inhibitor N3 with PDB ID 6LU7. Computational studies reveal that all ligands provided good binding affinities towards the target protein. Among all the chosen drugs, lopinavir showed the highest docking score of -11.75 kcal/mol. The results from this molecular docking study encourage the use of lopinavir as the first-line treatment drug due to its highest binding affinity.


Author(s):  
Sevki Adem ◽  
Volkan Eyupoglu ◽  
Iqra Sarfraz ◽  
Azhar Rasul ◽  
Muhammad Ali

COVID-19, a rapidly spreading new strain of coronavirus, has affected more than 150 countries and received worldwide attention. The lack of efficacious drugs or vaccines against SARS-CoV-2 has further worsened the situation. Thus, there is an urgent need to boost up research for the development of effective therapeutics and affordable diagnostic against COVID-19. The crystallized form of SARS-CoV-2 main protease (Mpro) was demonstrated by a Chinese researcher Liu et al. (2020) which is a novel therapeutic drug target. This study was conducted to evaluate the efficacy of medicinal plant-based bioactive compounds against COVID-19 Mpro by molecular docking study. Molecular docking investigations were performed by using Molegro Virtual Docker 7 to analyze the inhibition probability of these compounds against COVID-19. COVID-19 Mpro was docked with 80 flavonoid compounds and the binding energies were obtained from the docking of (PDB ID: 6LU7: Resolution 2.16 Å) with the native ligand. According to obtained results, hesperidin, rutin, diosmin, apiin, diacetylcurcumin, (E)-1-(2-Hydroxy-4-methoxyphenyl)-3-[3-[(E)-3-(2-hydroxy-4- methoxyphenyl)-3-oxoprop-1-enyl]phenyl]prop-2-en-1-one, and beta,beta'-(4-Methoxy-1,3- phenylene)bis(2'-hydroxy-4',6'-dimethoxyacrylophenone have been found as more effective on COVID-19 than nelfinavir. So, this study will pave a way for doing advanced experimental research to evaluate the real medicinal potential of these compounds to cure COVID-19.


Author(s):  
Shanmuga Subramanian S

Abstract Currently the new Coronavirus "COVID-19", also known as SARS-CoV-2, has infected nearly 3 million patients and nearly 200,000+ people have lost their lives due to this pandemic. There is an urgent need to find an antiviral agent that may slow down the spread of the virus. The aim of this study is to assess and evaluate compounds present in leaves of Neem tree (Azadirachta Indica) as potential inhibitors for COVID-19 Main Protease (Mpro) (PDB code: 6LU7). This will be done by blind molecular docking using PyRx and Auto Vina software. The compounds Hydroxychloroquine and Remdesivir were used for comparative study. The binding energies obtained from the docking of 6LU7 with meliacinanhydride, nimocinol, isomeldenin, nimbolide, zafaral, nimbandiol, nimbin, nimbinene, desacetylnimbin were -14.3, -12.4, -12.3, -12.2, -11.9, -11.8, -11.7, -11.7, -11.4 kcal/mol respectively. Therefore Meliacinanhydride (Ki=33.36 pM) and the compounds from Neem leaves may be a potential treatment option against COVID-19. In addition to that the leaves contain others compounds like Quercetin, Zinc,Vitamin A,Vitamin B1,B2,B6, Vitamin C,Vitamin E etc., which may boost immunity also (Garba, 2019) .Further investigation is needed to evaluate the results of this study to consider Neem leaves as potential treatment option as it might inhibit the virus and boost immunity also


Sign in / Sign up

Export Citation Format

Share Document