scholarly journals Applying Onicescu Information Energy for Gray Level Image Segmentation

Author(s):  
Vasile Patrascu

This article presents a method of segmenting images with gray levels that uses Onicescu's information energy calculated in the context of the neutrosophic theory. Starting from the information energy calculation for complete neutrosophic information, it is shown how to extend its calculation for incomplete and inconsistent neutrosophic information. The segmentation method is based on calculation of thresholds for separating the gray levels using the local maximum points of the Onicescu information energy.

2021 ◽  
Author(s):  
Vasile Patrascu

This article presents a method of segmenting images with gray levels that uses Onicescu's information energy calculated in the context of the neutrosophic theory. Starting from the information energy calcula-tion for complete neutrosophic information, it is shown how to extend its calculation for incomplete and inconsistent neutrosophic information. The segmentation method is based on calculation of thresholds for separating the gray levels using the local maximum points of the Onicescu information energy.


1989 ◽  
Author(s):  
Paolo Puliti ◽  
Guido Tascini

2014 ◽  
Vol 1046 ◽  
pp. 88-91
Author(s):  
Chun Bao Huo ◽  
Shuai Tong ◽  
Li Hui Zhao ◽  
Xiang Yun Li

Generally, the effect of cell image that segmented via the threshold value method is not ideal generally; the found cell boundary cannot conform to the cell edge in the original picture well. In this paper, the threshold value segmentation method is improved; apply the judging criterion of gray level difference maximum interval to be the minimum, and conduct secondary treating on the image, and the image’s segmentation effect is more ideal.


2021 ◽  
Vol 30 (04) ◽  
Author(s):  
Palanisamy Karthick ◽  
Samayan Narayanamoorthy ◽  
Sengottaiyan Maheswari ◽  
Suriyakumaran Sowmiya

2012 ◽  
Vol 487 ◽  
pp. 622-626 ◽  
Author(s):  
Song Yang ◽  
Long Tan Shao ◽  
Xiao Xia Guo ◽  
Xiao Liu ◽  
Bo Ya Zhao

A segmentation method of combining gray-level threshold and fractal feature for crack images is proposed, and the fractal law for the perimeter and area of the target is introduced as the constraint condition for the image segmentation of crack. At first, Otsu algorithm is used for the initial segmentation of the crack image, and then the edge of crack is optimized in accordance with fractal law. At last, boundary of crack is determined, and the final result of the image segmentation is obtained. This method makes full use of the fractal geometry law and image information, to effectively solve the problems such as crack contour detection, regional connection and cross crack identification. Several typical examples are analyzed, and the results show that this method has a good segmentation effect on crack images, and it can also be used to identify the other images which have fractal feature.


Author(s):  
Qindong Sun ◽  
Yimin Qiao ◽  
Hua Wu ◽  
Jiamin Wang

Edge detection is a vital part in image segmentation. In this paper, a novel method based on adjacent dispersion for edge detection is proposed. This method utilizes adjacent dispersion to detect edges, avoiding thresholds selection, anisotropy in convolution computation and discontinuity in edges, and it is composed of two modules, namely the dispersion operator and the refinement. The dispersion is to obtain a matrix of discrete coefficient of a gray level image and the refinement is to thin edges to one-pixel-point and ensure it logically continuous. The performance of the proposed edge detector is evaluated on different test images and compared with popular edge detectors, Canny and Sobel. Experiment results indicate that the proposed method performs well without thresholds and offers superior performance in continuity in edge detection in digital images.


Author(s):  
Vasile Patrascu

This article presents a new method of segmenting grayscale images by minimizing Shannon's neutrosophic entropy. For the proposed segmentation method, the neutrosophic information components, i.e., the degree of truth, the degree of neutrality and the degree of falsity are defined taking into account the belonging to the segmented regions and at the same time to the separation threshold area. The principle of the method is simple and easy to understand and can lead to multiple thresholds. The efficacy of the method is illustrated using some test gray level images. The experimental results show that the proposed method has good performance for segmentation with optimal gray level thresholds.


2011 ◽  
Vol 23 (1) ◽  
pp. 23
Author(s):  
Liang Tang ◽  
Wei-Xin Xie ◽  
Jian-Jun Huang

An automatic multilevel image segmentation method based on sup-star fuzzy reasoning (SSFR) is presented. Using the well-known sup-star fuzzy reasoning technique, the proposed algorithm combines the global statistical information implied in the histogram with the local information represented by the fuzzy sets of gray-levels, and aggregates all the gray-levels into several classes characterized by the local maximum values of the histogram. The presented method has the merits of determining the number of the segmentation classes automatically, and avoiding to calculating thresholds of segmentation. Emulating and real image segmentation experiments demonstrate that the SSFR is effective.


Sign in / Sign up

Export Citation Format

Share Document