scholarly journals The Optimum Method for Urban Land Surface Temperature Estimation

Author(s):  
Ekkaluk Salakkham ◽  
Pantip Piyatadsananon

Land Surface Temperature (LST) estimation has been studied for several purposes, while the optimal method of estimating the LST has not been criticized yet. This research explores the optimum method in Land Surface Temperature (LST) estimation using LANDSAT-8 imagery data. Four different LST retrieval approaches, the Radiative Transfer Equation-based method (RTE), the Improved Mono-Window method (IMW), the Generalized Single-Channel method (GSC), and the Split-Window algorithm (SW), were calculated to present the LSTs over Buriram Town Municipality, Thailand. The calculated LSTs from these four methods were compared with the ground-based temperature data, taken on the same date and time of the employed LANDSAT-8 images. For this reason, the optimum method of the LST calculation was justified by considering the lowest normalized root means square error (NRMSE) values. As a result, the SW algorithm presents an optimum method in LST estimation. Regarding the SW, this algorithm requires not only the atmospheric profiles during satellite acquisition but also the retrieval of several coefficients. Besides, the LST retrieval method based on the SW algorithm is sensitive to water vapor content and coefficients. Although the SW algorithm is an optimum method explored in this study, it is emphasized that the adjustable values of coefficient response to the atmospheric state may be recommended. With these conditions, the SW algorithm can generate the land-surface temperature over the mixed land-use and land cover on the LANDSAT-8 images.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1778 ◽  
Author(s):  
Md Qutub Uddin Sajib ◽  
Tao Wang

The presence of two thermal bands in Landsat 8 brings the opportunity to use either one or both of these bands to retrieve Land Surface Temperature (LST). In order to compare the performances of existing algorithms, we used four methods to retrieve LST from Landsat 8 and made an intercomparison among them. Apart from the direct use of the Radiative Transfer Equation (RTE), Single-Channel Algorithm and two Split-Window Algorithms were used taking an agricultural region in Bangladesh as the study area. The LSTs retrieved in the four methods were validated in two ways: first, an indirect validation against reference LST, which was obtained in the Atmospheric and Topographic CORection (ATCOR) software module; second, cross-validation with Terra MODerate Resolution Imaging Spectroradiometer (MODIS) daily LSTs that were obtained from the Application for Extracting and Exploring Analysis Ready Samples (A ρ ρ EEARS) online tool. Due to the absence of LST-monitoring radiosounding instruments surrounding the study area, in situ LSTs were not available; hence, validation of satellite retrieved LSTs against in situ LSTs was not performed. The atmospheric parameters necessary for the RTE-based method, as well as for other methods, were calculated from the National Centers for Environmental Prediction (NCEP) database using an online atmospheric correction calculator with MODerate resolution atmospheric TRANsmission (MODTRAN) codes. Root-mean-squared-error (RMSE) against reference LST, as well as mean bias error against both reference and MODIS daily LSTs, was used to interpret the relative accuracy of LST results. All four methods were found to result in acceptable LST products, leaving atmospheric water vapor content (w) as the important determinant for the precision result. Considering a set of several Landsat 8 images of different dates, Jiménez-Muñoz et al.’s (2014) Split-Window algorithm was found to result in the lowest mean RMSE of 1.19 ° C . Du et al.’s (2015) Split-Window algorithm resulted in mean RMSE of 1.50 ° C . The RTE-based direct method and the Single-Channel algorithm provided the mean RMSE of 2.47 ° C and 4.11 ° C , respectively. For Du et al.’s algorithm, the w range of 0.0 to 6.3 g cm−2 was considered, whereas for the other three methods, w values as retrieved from the NCEP database were considered for corresponding images. Land surface emissivity was retrieved through the Normalized Difference Vegetation Index (NDVI)-threshold method. This intercomparison study provides an LST retrieval methodology for Landsat 8 that involves four algorithms. It proves that (i) better LST results can be obtained using both thermal bands of Landsat 8; (ii) the NCEP database can be used to determine atmospheric parameters using the online calculator; (iii) MODIS daily LSTs from A ρ ρ EEARS can be used efficiently in cross-validation and intercomparison of Landsat 8 LST algorithms; and (iv) when in situ LST data are not available, the ATCOR-derived LSTs can be used for indirect verification and intercomparison of Landsat 8 LST algorithms.


Author(s):  
Yue Jiang ◽  
WenPeng Lin

In the trend of global warming and urbanization, frequent extreme weather has a severe impact on the lives of citizens. Land Surface Temperature (LST) is an essential climate variable and a vital parameter for land surface processes at local and global scales. Retrieving LST from global, regional, and city-scale thermal infrared remote sensing data has unparalleled advantages and is one of the most common methods used to study urban heat island effects. Different algorithms have been developed for retrieving LST using satellite imagery, such as the Radiative Transfer Equation (RTE), Mono-Window Algorithm (MWA), Split-Window Algorithm (SWA), and Single-Channel Algorithm (SCA). A case study was performed in Shanghai to evaluate these existing algorithms in the retrieval of LST from Landsat-8 images. To evaluate the estimated LST accurately, measured data from meteorological stations and the MOD11A2 product were used for validation. The results showed that the four algorithms could achieve good results in retrieving LST, and the LST retrieval results were generally consistent within a spatial scale. SWA is more suitable for retrieving LST in Shanghai during the summer, a season when the temperature and the humidity are both very high in Shanghai. Highest retrieval accuracy could be seen in cultivated land, vegetation, wetland, and water body. SWA was more sensitive to the error caused by land surface emissivity (LSE). In low temperature and a dry winter, RTE, SWA, and SCA are relatively more reliable. Both RTE and SCA were sensitive to the error caused by atmospheric water vapor content. These results can provide a reasonable reference for the selection of LST retrieval algorithms for different periods in Shanghai.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5049 ◽  
Author(s):  
Lei Wang ◽  
Yao Lu ◽  
Yunlong Yao

The successful launch of the Landsat 8 satellite provides important data for the monitoring of urban heat island effects. Since the Landsat 8 TIRS data has two thermal infrared bands, it is suitable for many algorithms to retrieve the land surface temperature (LST). However, the selection of algorithms for retrieving the LST, the acquisition of algorithm input parameters, and the verification of the results are problems without obvious solutions. Taking Changchun City as an example, this paper used the mono-window algorithm (MWA), the split window algorithm (SWA), and the single-channel (SC) method to extract the LST from the Landsat 8 image and compared the three algorithms in terms of input parameters, accuracy, and sensitivity. The results show that all three algorithms can achieve good results in retrieving the LST. The SWA is the least sensitive to the error of the input parameters. The MWA and the SC method are sensitive to the error of the input parameters, and compared with the error of the LSE, these two algorithms are more sensitive to the error of atmospheric water vapor content. In addition, the MWA is also very sensitive to the error of the effective mean atmospheric temperature.


2020 ◽  
Vol 12 (5) ◽  
pp. 791 ◽  
Author(s):  
Jingjing Yang ◽  
Si-Bo Duan ◽  
Xiaoyu Zhang ◽  
Penghai Wu ◽  
Cheng Huang ◽  
...  

Land surface temperature (LST) is vital for studies of hydrology, ecology, climatology, and environmental monitoring. The radiative-transfer-equation-based single-channel algorithm, in conjunction with the atmospheric profile, is regarded as the most suitable one with which to produce long-term time series LST products from Landsat thermal infrared (TIR) data. In this study, the performances of seven atmospheric profiles from different sources (the MODerate-resolution Imaging Spectroradiomete atmospheric profile product (MYD07), the Atmospheric Infrared Sounder atmospheric profile product (AIRS), the European Centre for Medium-range Weather Forecasts (ECMWF), the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2), the National Centers for Environmental Prediction (NCEP)/Global Forecasting System (GFS), NCEP/Final Operational Global Analysis (FNL), and NCEP/Department of Energy (DOE)) were comprehensively evaluated in the single-channel algorithm for LST retrieval from Landsat 8 TIR data. Results showed that when compared with the radio sounding profile downloaded from the University of Wyoming (UWYO), the worst accuracies of atmospheric parameters were obtained for the MYD07 profile. Furthermore, the root-mean-square error (RMSE) values (approximately 0.5 K) of the retrieved LST when using the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles were smaller than those but greater than 0.8 K when the MYD07, AIRS, and NCEP/DOE profiles were used. Compared with the in situ LST measurements that were collected at the Hailar, Urad Front Banner, and Wuhai sites, the RMSE values of the LST that were retrieved by using the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles were approximately 1.0 K. The largest discrepancy between the retrieved and in situ LST was obtained for the NCEP/DOE profile, with an RMSE value of approximately 1.5 K. The results reveal that the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles have great potential to perform accurate atmospheric correction and generate long-term time series LST products from Landsat TIR data by using a single-channel algorithm.


Sensors ◽  
2014 ◽  
Vol 14 (4) ◽  
pp. 5768-5780 ◽  
Author(s):  
Offer Rozenstein ◽  
Zhihao Qin ◽  
Yevgeny Derimian ◽  
Arnon Karnieli

2015 ◽  
Vol 7 (1) ◽  
pp. 647-665 ◽  
Author(s):  
Chen Du ◽  
Huazhong Ren ◽  
Qiming Qin ◽  
Jinjie Meng ◽  
Shaohua Zhao

Sign in / Sign up

Export Citation Format

Share Document