scholarly journals Warping Effects in Strongly Perturbed Metrics

Author(s):  
Marco Frasca ◽  
Riccardo Maria Liberati ◽  
Massimiliano Rossi

A technique devised some years ago permits to study a theory in a regime of strong perturbations. This translate into a gradient expansion that, at the leading order, can recover the BKL solution. We solve exactly the leading order equations in a spherical symmetric case and we show that the 4-velocity in such a case is multiplied by an exponential warp factor when the perturbation is properly applied. This factor is always greater than one. We will give a closed form solution of this factor for a simple case. Some numerical examples are also given.

Physics ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 665-678
Author(s):  
Marco Frasca ◽  
Riccardo Maria Liberati ◽  
Massimiliano Rossi

A technique devised some years ago permits us to develop a theory regarding a regime of strong perturbations. This translates into a gradient expansion that, at the leading order, can recover the Belinsky-Kalathnikov-Lifshitz solution for general relativity. We solve exactly the leading order Einstein equations in a spherical symmetric case, assuming a Schwarzschild metric under the effect of a time-dependent perturbation, and we show that the 4-velocity in such a case is multiplied by an exponential warp factor when the perturbation is properly applied. This factor is always greater than one. We will give a closed form solution of this factor for a simple case. Some numerical examples are also given.


2000 ◽  
Vol 68 (2) ◽  
pp. 176-185 ◽  
Author(s):  
S. Candan ◽  
I. Elishakoff

An infinite number of closed-form solutions is reported for a deterministically or stochastically nonhomogeneous beam, for both natural frequencies and reliabilities, for specialized cases. These solutions may prove useful as benchmark solutions. Numerical examples are evaluated.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M.-C. Casabán ◽  
J.-C. Cortés ◽  
B. García-Mora ◽  
L. Jódar

This paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach. Random operational mean square calculus is developed for the introduced transforms. Using previous results about random ordinary differential equations, a closed form solution stochastic process is firstly obtained. Then, expectation and variance are computed. Illustrative numerical examples are included.


2013 ◽  
Vol 40 (2) ◽  
pp. 106-114
Author(s):  
J. Venetis ◽  
Aimilios (Preferred name Emilios) Sideridis

2021 ◽  
Vol 10 (7) ◽  
pp. 435
Author(s):  
Yongbo Wang ◽  
Nanshan Zheng ◽  
Zhengfu Bian

Since pairwise registration is a necessary step for the seamless fusion of point clouds from neighboring stations, a closed-form solution to planar feature-based registration of LiDAR (Light Detection and Ranging) point clouds is proposed in this paper. Based on the Plücker coordinate-based representation of linear features in three-dimensional space, a quad tuple-based representation of planar features is introduced, which makes it possible to directly determine the difference between any two planar features. Dual quaternions are employed to represent spatial transformation and operations between dual quaternions and the quad tuple-based representation of planar features are given, with which an error norm is constructed. Based on L2-norm-minimization, detailed derivations of the proposed solution are explained step by step. Two experiments were designed in which simulated data and real data were both used to verify the correctness and the feasibility of the proposed solution. With the simulated data, the calculated registration results were consistent with the pre-established parameters, which verifies the correctness of the presented solution. With the real data, the calculated registration results were consistent with the results calculated by iterative methods. Conclusions can be drawn from the two experiments: (1) The proposed solution does not require any initial estimates of the unknown parameters in advance, which assures the stability and robustness of the solution; (2) Using dual quaternions to represent spatial transformation greatly reduces the additional constraints in the estimation process.


Sign in / Sign up

Export Citation Format

Share Document