scholarly journals Sequestering Biomass for Natural, Efficient, and Low-Cost Direct Air Capture of Carbon Dioxide (Version 4)

Author(s):  
Jeffrey A. Amelse ◽  
Paul K. Behrens

Many corporations and governments aspire to become Net Zero Carbon Dioxide by 2030-2050. Achieving this goal requires understanding where energy is produced and consumed, the magnitude of CO2 generation, and the Carbon Cycle. Many prior proposed solutions focus on reducing future CO2 emissions from continued use of fossil fuels. Examination of these technologies exposes their limitations and shows that none offer a complete solution. For example, bioethanol is shown to be both carbon and energy inefficient. Direct Air Capture technologies are needed to reduce CO2 already in the air. The most natural form of Direct Air Capture involves letting nature do the work of creating biomass via photosynthesis. However, it is necessary to break the Carbon Cycle by permanently sequestering that biomass carbon in “landfills” modified to discourage decomposition to CO2 and methane. Tree leaves and biomass grown on-purpose, such as high yield switchgrass, are proposed as good biomass sources for this purpose. Left unsequestered, leaves decompose with a short Carbon Cycle time constant releasing CO2 back to the atmosphere. While in any given year, leaves represent a small fraction of a tree’s above ground biomass, leaves can represent a substantial fraction of the total biomass generated by a tree when integrated over a tree’s lifetime. Understanding the chemistry of the distinct phases landfills undergo is the key to minimizing or eliminating decomposition. First, the compact cross-linked structure of cellulose and keeping water out will make it difficult for initial depolymerization to release sugars. Air ingress should be minimized to minimize Phase I aerobic decomposition. pH manipulation can discourage acid formation during Phase II. Lignocellulose is low in nutrients needed for anaerobic decomposition. Inhibitors can be added if needed. The goal is to move quickly to the dormant phase where decomposition stops. The cost for Carbon Capture and Storage (CCS) for growing and sequestering high yield switchgrass is estimated to be lower than CCS for steam reforming of methane hydrogen plants (SRM) and supercritical or combined cycle coal power plants. Thus, sequestration of biomass is a natural, carbon efficient, and low-cost method of Direct Capture. Biomass sequestration can provide CO2 removal on giga tonnes per year scale and can be implemented in the needed timeframe (2030-2050).

Author(s):  
Jeffrey Amelse ◽  
Paul K. Behrens

Many corporations and governments aspire to become Net Zero Carbon Dioxide by 2030-2050. Achieving this goal requires understanding where energy is produced and consumed, the magnitude of CO2 generation, and the Carbon Cycle. Many prior proposed solutions focus on reducing future CO2 emissions from continued use of fossil fuels. Examination of these technologies exposes their limitations and shows that none offer a complete solution. Direct Capture technologies are needed to reduce CO2 already in the air. The best way to permanently remove CO2 already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO2 and permanently sequestering that biomass carbon in landfills modified to discourage decomposition to CO2 and methane. Tree leaves and switchgrass are proposed as good biomass sources for this purpose. Left unsequestered, leaves decompose with a short Carbon Cycle time constant releasing CO2 back to the atmosphere. Leaves can represent a substantial fraction of the total biomass generated by a tree when integrated over a tree’s lifetime. The cost for Carbon Capture and Storage (CCS) for growing and sequestering high yield switchgrass is estimated to be lower than CCS for steam reforming of methane hydrogen plants (SRM) and supercritical or combined cycle coal power plants. Thus, sequestration of biomass is a natural, carbon efficient, and low-cost method of Direct Capture. Biomass sequestration can provide CO2 removal on giga tonnes per year scale and can be implemented in the needed timeframe (2030-2050).


Author(s):  
Jeffrey Amelse ◽  
Paul K. Behrens

Many corporations and governments aspire to become Net Zero Carbon Dioxide by 2030-2050. Achieving Net Zero CO2 requires understanding where energy is produced and consumed, the magnitude of CO2 generation, and the Carbon Cycle. It is unreasonable to assume that fossil fuel can be completely replaced, and thus, atmospheric CO2 will continue to accumulate. Many prior proposed solutions focus on reducing future CO2 emissions from continued use of fossil fuels. Examination of these technologies exposes their limitations and shows that none offer a complete solution. Direct Capture technologies are needed to reduce CO2 already in the air. However, some of those already proposed would lead to a very high cost of Carbon Capture, Use, and Storage (CCUS). Biofuels can help achieve reduction goals. However, two of the six carbons in sugar fermented to bioethanol produce CO2 per the stoichiometry of the reaction. Four carbons go to ethanol, which go back to the atmosphere upon burning in an engine. Thus, without CCUS, which most current bioethanol plants do not practice, bioethanol would at best be sustainable. The only way to permanently remove CO2 already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO2 and permanently sequestering that biomass carbon. Permanent sequestration can be achieved in landfills modified to discourage biomass decomposition to CO2 and methane. Sequestration of biomass carbon is proposed as a simple and natural means of Direct Capture. Tree leaves are proposed as a good source of biomass for this purpose. Left unsequestered, leaves decompose with a short Carbon Cycle time constant releasing CO2 back to the atmosphere. Leaves represent a substantial fraction of the total biomass generated by a tree when integrated over a tree’s lifetime. High yield crops, such as switchgrass would also be a good source of biomass. The cost for growing switchgrass and sequestering it in a landfill is estimated to be on the order of $120/mt CO2 for a conservative yield of 3.5 tons/acre and may be reduced to as low as $88/mt CO2 if the development of high yield switchgrass is successful. This compares to an estimated cost of CCUS from the Steam Reforming of Methane to produce hydrogen of about $190/mt. Thus, sequestration of biomass is shown to be a natural, carbon efficient, and low-cost method of Direct Capture.


Author(s):  
Jeffrey Amelse ◽  
Paul K. Behrens

Many corporations and governments aspire to become Net Zero Carbon Dioxide by 2030-2050. Achieving Net Zero CO2 requires understanding where energy is produced and consumed, the magnitude of CO2 generation, and the Carbon Cycle. It is unreasonable to assume that fossil fuel can be completely replaced, and thus, atmospheric CO2 will continue to accumulate. Many prior proposed solutions focus on reducing future CO2 emissions from continued use of fossil fuels. Examination of these technologies exposes their limitations and shows that none offer a complete solution. Direct Capture technologies are needed to reduce CO2 already in the air. However, some of those already proposed would lead to a very high cost of Carbon Capture, Use, and Storage (CCUS). Biofuels can help achieve reduction goals. However, two of the six carbons in sugar fermented to bioethanol produce CO2 per the stoichiometry of the reaction. Four carbons go to ethanol, which go back to the atmosphere upon burning in an engine. Thus, without CCUS, which most current bioethanol plants do not practice, bioethanol would at best be sustainable. The only way to permanently remove CO2 already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO2 and permanently sequestering that biomass carbon. Permanent sequestration can be achieved in landfills modified to discourage biomass decomposition to CO2 and methane. Sequestration of biomass carbon is proposed as a simple and natural means of Direct Capture. Tree leaves are proposed as a good source of biomass for this purpose. Left unsequestered, leaves decompose with a short Carbon Cycle time constant releasing CO2 back to the atmosphere. Leaves represent a substantial fraction of the total biomass generated by a tree when integrated over a tree’s lifetime. High yield crops, such as switchgrass would also be a good source of biomass. The cost for growing switchgrass and sequestering it in a landfill is estimated to be on the order of $120/mt CO2 for a conservative yield of 3.5 tons/acre and may be reduced to as low as $88/mt CO2 if the development of high yield switchgrass is successful. This compares to an estimated cost of CCUS from the Steam Reforming of Methane to produce hydrogen of about $190/mt. Thus, sequestration of biomass is shown to be a natural, carbon efficient, and low-cost method of Direct Capture.


Author(s):  
Haley A. Petersen ◽  
Oana R. Luca

This work maps thermodynamic favorability zones for the capture of carbon dioxide from air.


2018 ◽  
Vol 2 (6) ◽  
pp. 1153-1169 ◽  
Author(s):  
H. A. Daggash ◽  
C. F. Patzschke ◽  
C. F. Heuberger ◽  
L. Zhu ◽  
K. Hellgardt ◽  
...  

In order to meet the 1.5−2C target, with CCU, it is necessary to close the carbon cycle, and avoid partial decarbonisation scenarios. In this context, direct air capture appears more effective than CCU.


2018 ◽  
Vol 146 ◽  
pp. 129-134 ◽  
Author(s):  
Valentin Gutknecht ◽  
Sandra Ósk Snæbjörnsdóttir ◽  
Bergur Sigfússon ◽  
Edda Sif Aradóttir ◽  
Louise Charles

Sign in / Sign up

Export Citation Format

Share Document