scholarly journals Theoretical, Unified Derivation of Both the Integer Quantum Hall Effect and Fractional Quantum Hall Effect

Author(s):  
Shinichi Ishiguri

In this paper, using the two integers that describe the stationary 2-dimensional wave and the charge quantization along with the balance between the Lorentz force and electrical force, we succeed in deriving the fractional quantum Hall effect and the integer quantum Hall effect; we find that the latter exists as a special case of the former. Moreover, using the derived expression describing the fractional quantum Hall effect, a relationship between the plateau in the resistivity of the sample and the applied magnetic field is obtained. The findings of this model agree well with experimental measurements. Because the two integers that describe the stationary 2-dimensional wave and the charge quantization along with the force balance have concrete physical meanings in this work, we could provide a clear picture of the origin of both the integer quantum Hall effect and the fractional quantum Hall effect.

2007 ◽  
Vol 21 (02n03) ◽  
pp. 109-113
Author(s):  
JE HUAN KOO ◽  
GUANGSUP CHO

We investigate the integer quantum Hall effect (IQHE) and the fractional quantum Hall effect (FQHE). We derive the quantized Hall resistance of IQHE in the presence of the high magnetic field using the scheme of standing waves by de Broglie matter wave of electron gas confined within a two-dimensional square-type quantum well. Without any modification of electrons and holes, it is shown that FQHE is only a decoupling mode of the Hall resistance by two-band-type of electrons and holes, which are governed by IQHE respectively.


1992 ◽  
Vol 06 (11n12) ◽  
pp. 2253-2273
Author(s):  
R. FERRARI

The main phenomenological features of Integer Quantum Hall Effect (IQHE) and Fractional Quantum Hall Effect (FQHE) are reviewed. A theory is proposed based on a new basis for the single particle states, given by a representation of the Magnetic Translation Group (MTG).


1987 ◽  
Vol 56 (9) ◽  
pp. 3005-3008 ◽  
Author(s):  
Junichi Wakabayashi ◽  
Satoru Sudou ◽  
Shinji Kawaji ◽  
Kazuhiko Hirakawa ◽  
Hiroyuki Sakaki

Sign in / Sign up

Export Citation Format

Share Document