scholarly journals Gaffnian and Haffnian: Physical relevance of nonunitary conformal field theory for the incompressible fractional quantum Hall effect

2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Bo Yang
1991 ◽  
Vol 05 (01n02) ◽  
pp. 417-426
Author(s):  
B. Sakita ◽  
Dong-Ning Sheng ◽  
Zhao-Bin Su

We present an application of collective field theory to the fractional quantum Hall effect (FQHE). We first express the condition, that the electrons are all in the lowest Landau level, as a constraint equation for the state functional. We then derive the fractional filling factor from this equation together with the no-free-vortex assumption. A hierarchy of filling factors is derived by using the particle-vortex dual transformations. In the final section we discuss an attempt at a dynamical theory of FQHE, which would justify the no-free-vortex assumption. A derivation of Laughlin’s wave function with and without quasi-hole excitations is also given.


1996 ◽  
Vol 11 (01) ◽  
pp. 55-68 ◽  
Author(s):  
MICHAEL A.I. FLOHR

We propose a new way for describing the transition between two quantum Hall effect states with different filling factors within the framework of rational conformal field theory. Using a particular class of nonunitary theories, we explicitly recover Jain’s picture of attaching flux quanta by the fusion rules of primary fields. Filling higher Landau levels of composite fermions can be described by taking tensor products of conformal theories. The usual projection to the lowest Landau level corresponds then to a simple coset of these tensor products with several U(1)-theories divided out. These two operations — the fusion map and the tensor map — can explain the Jain series and all other observed fractions as exceptional cases. Within our scheme of transitions we naturally find a field with the experimentally observed universal critical exponent 7/3.


Sign in / Sign up

Export Citation Format

Share Document