scholarly journals MODIFICATION OF CARBON PASTE ELECTRODE WITH CROWN ETHER (DIBENZO-18-CROWN-6) FOR ASCORBIC ACID ANALYSIS USING DIFFERENTIAL PULSE VOLTAMMETRY METHOD

2016 ◽  
Vol 11 (2) ◽  
pp. 175
Author(s):  
Irdhawati Irdhawati ◽  
Manuntun Manurung ◽  
Anisha Maulinasari

In this research, the modified carbon paste electrode with crown ether (dibenzo-18-crown-6) has been prepared, for determination of ascorbic acid. Some of parameters observed were optimization of crown ether composition in carbon paste, pH of solution, linear concentration range, limit of detection, reproducibility, and recovery. The optimum performance of the prepared electrode was applied for determination of commercialsampleswhich contain of ascorbic acid. The result of this research showsthat the optimum composition of crown ether in carbon paste is 0.6 % at pH 4. Linear range of concentration obtained is from 2 - 200 μM. The detection limit and percentage of recovery are 1.243 μM and 101.31 %, respectively. The modified electrode has HorRat value less than 2, it indicates a good reproducibility. Analysis of 4 commercial samples which contain of ascorbic acid were in agreement with the content listed in the label with the suitability of 94 - 100 %.


2016 ◽  
Vol 11 (2) ◽  
pp. 175
Author(s):  
Irdhawati Irdhawati ◽  
Manuntun Manurung ◽  
Anisha Maulinasari

In this research, the modified carbon paste electrode with crown ether (dibenzo-18-crown-6) has been prepared, for determination of ascorbic acid. Some of parameters observed were optimization of crown ether composition in carbon paste, pH of solution, linear concentration range, limit of detection, reproducibility, and recovery. The optimum performance of the prepared electrode was applied for determination of commercialsampleswhich contain of ascorbic acid. The result of this research showsthat the optimum composition of crown ether in carbon paste is 0.6 % at pH 4. Linear range of concentration obtained is from 2 - 200 μM. The detection limit and percentage of recovery are 1.243 μM and 101.31 %, respectively. The modified electrode has HorRat value less than 2, it indicates a good reproducibility. Analysis of 4 commercial samples which contain of ascorbic acid were in agreement with the content listed in the label with the suitability of 94 - 100 %.



2015 ◽  
Vol 22 (3) ◽  
pp. 451-458
Author(s):  
Vít Novotný ◽  
Jiří Barek

Abstract A method for the determination of aclonifen at a carbon paste electrode modified with tricresyl phosphate has been developed. The optimum electrochemical regime proved to be differential pulse voltammetry (DPV) in the negative potential range from −200 to −1600 mV. The optimum pH for the determination proved to be pH = 8. The calibration dependence is linear and the limit of detection achieved for the method was 2·10−6 mol/dm3. The method is fast, reliable and it is suitable for the detection of aclonifen in the concentration range from 2·10−6 to 1·10−4 mol/dm3.



2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yosef Nikodimos ◽  
Beyene Hagos

A simple and highly sensitive electrochemical method based on a 1,4-benzoquinone modified carbon paste electrode (1,4-BQMCPE) was described for the determination of tinidazole (TDZ). In Britton Robinson buffer solution, TDZ yields well-defined irreversible reduction peak at −0.344 V on a 1,4-BQMCPE. Compared with that on a bare CPE, the reduction peak of TDZ increased significantly on the modified CPE and the effects of different parameters on the voltammetric responses were also investigated. Differential pulse voltammetric method was proposed and optimized for TDZ determination and its reductive peak current response at 1,4-BQMCPE was found to show linear dependence on the concentration of TDZ in the range of 1.0 × 10−6 to 5.0 × 10−4 M with a linear regression equation, correlation coefficient, limit of detection (LOD), and limit of quantification (LOQ) of IPC (μA) = 0.19958 + 0.02657C (μM), 0.99486, 1.10 × 10−7 M, and 3.77 × 10−7, respectively. Excellent recovery results for spiked TDZ in pharmaceutical tablet samples ranging within 97.44–97.51% and in urine ranging within 95.37–96.91% were observed. The selectivity of the method for TDZ was further studied in the presence of selected potential interferents and confirmed the potential applicability of the developed method for the determination of TDZ.



2019 ◽  
Vol 14 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Girish Tigari ◽  
J.G. Manjunatha ◽  
D.K. Ravishankar ◽  
G. Siddaraju

An electrogenerated Polyarginine modified carbon paste electrode (PAMCPE) was fabricated through a simple electropolymerization procedure. The devised electrode was characterized by cyclic voltammetry (CV) and Field Emission Scanning Electron Microscopy (FESEM). This electrode was utilized for electrocatalytic estimation of Riboflavin (RF) and its instantaneous resolution with ascorbic acid (AA) and folic acid (FA) in phosphate buffer solution (PBS) of pH 6.0 by differential pulse voltammetry (DPV). It was observed to be a very responsive electrode for the electrochemical detection and quantification of RF. It was revealed that PAMCPE generates higher current response towards RF contrast to the bare carbon paste electrode (BCPE). Under optimized condition, the RF oxidation current values were linearly reliant on the RF concentration increment with a limit of detection (LOD) of 9.3·10-8 M using DPV. The stable PAMCPE was effectively applied for estimation of RF in B-complex pill and complex human blood serum samples.





Sign in / Sign up

Export Citation Format

Share Document